The quantum orbifold cohomology of weighted projective spaces

被引:53
|
作者
Coates, Tom [1 ]
Corti, Alessio [1 ]
Lee, Yuan-Pin [2 ]
Tseng, Hsian-Hua [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
美国国家科学基金会;
关键词
GROMOV-WITTEN INVARIANTS; DELIGNE-MUMFORD STACKS; CHEN-RUAN COHOMOLOGY; RATIONAL CURVES; TORUS ACTIONS; VARIETIES; HOMOLOGY; RING;
D O I
10.1007/s11511-009-0035-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the small quantum orbifold cohomology of arbitrary weighted projective spaces. We generalize Givental's heuristic argument, which relates small quantum cohomology to S (1)-equivariant Floer cohomology of loop space, to weighted projective spaces and use this to conjecture an explicit formula for the small J-function, a generating function for certain genus-zero Gromov-Witten invariants. We prove this conjecture using a method due to Bertram. This provides the first non-trivial example of a family of orbifolds of arbitrary dimension for which the small quantum orbifold cohomology is known. In addition we obtain formulas for the small J-functions of weighted projective complete intersections satisfying a combinatorial condition; this condition naturally singles out the class of orbifolds with terminal singularities.
引用
收藏
页码:139 / 193
页数:55
相关论文
共 50 条
  • [41] The small quantum cohomology of a weighted projective space, a mirror D-module and their classical limits
    Antoine Douai
    Etienne Mann
    Geometriae Dedicata, 2013, 164 : 187 - 226
  • [42] The small quantum cohomology of a weighted projective space, a mirror D-module and their classical limits
    Douai, Antoine
    Mann, Etienne
    GEOMETRIAE DEDICATA, 2013, 164 (01) : 187 - 226
  • [43] Cohomological study of weighted projective spaces
    AlAmrani, A
    ALGEBRAIC GEOMETRY-BK, 1997, 193 : 1 - 52
  • [44] Mutations of Fake Weighted Projective Spaces
    Coates, Tom
    Gonshaw, Samuel
    Kasprzyk, Alexander
    Nabijou, Navid
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [45] Weighted projective spaces and reflexive simplices
    Conrads, H
    MANUSCRIPTA MATHEMATICA, 2002, 107 (02) : 215 - 227
  • [46] Beilinson resolutions on weighted projective spaces
    Canonaco, A
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (01) : 35 - 40
  • [47] Weighted projective spaces and reflexive simplices
    Heinke Conrads
    manuscripta mathematica, 2002, 107 : 215 - 227
  • [48] WEIGHTED PROJECTIVE SPACES AS AMPLE DIVISORS
    BUIUM, A
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (06): : 833 - 842
  • [49] ON ANALYTIC COVERINGS OF WEIGHTED PROJECTIVE SPACES
    DIMCA, A
    DIMIEV, S
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (MAY) : 234 - 238
  • [50] Hypergeometric equations and weighted projective spaces
    CORTI Alessio
    GOLYSHEV Vasily
    ScienceChina(Mathematics), 2011, 54 (08) : 1577 - 1590