The quantum orbifold cohomology of weighted projective spaces

被引:53
|
作者
Coates, Tom [1 ]
Corti, Alessio [1 ]
Lee, Yuan-Pin [2 ]
Tseng, Hsian-Hua [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
美国国家科学基金会;
关键词
GROMOV-WITTEN INVARIANTS; DELIGNE-MUMFORD STACKS; CHEN-RUAN COHOMOLOGY; RATIONAL CURVES; TORUS ACTIONS; VARIETIES; HOMOLOGY; RING;
D O I
10.1007/s11511-009-0035-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the small quantum orbifold cohomology of arbitrary weighted projective spaces. We generalize Givental's heuristic argument, which relates small quantum cohomology to S (1)-equivariant Floer cohomology of loop space, to weighted projective spaces and use this to conjecture an explicit formula for the small J-function, a generating function for certain genus-zero Gromov-Witten invariants. We prove this conjecture using a method due to Bertram. This provides the first non-trivial example of a family of orbifolds of arbitrary dimension for which the small quantum orbifold cohomology is known. In addition we obtain formulas for the small J-functions of weighted projective complete intersections satisfying a combinatorial condition; this condition naturally singles out the class of orbifolds with terminal singularities.
引用
收藏
页码:139 / 193
页数:55
相关论文
共 50 条
  • [31] The equivariant cohomology ring of weighted projective space
    Bahri, Anthony
    Franz, Matthias
    Ray, Nigel
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 : 395 - 405
  • [32] Geodesics on weighted projective spaces
    Guillemin, V.
    Uribe, A.
    Wang, Z.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 36 (02) : 205 - 220
  • [33] Geodesics on weighted projective spaces
    V. Guillemin
    A. Uribe
    Z. Wang
    Annals of Global Analysis and Geometry, 2009, 36 : 205 - 220
  • [34] The classification of weighted projective spaces
    Bahri, Anthony
    Franz, Matthias
    Notbohm, Dietrich
    Ray, Nigel
    FUNDAMENTA MATHEMATICAE, 2013, 220 (03) : 217 - 226
  • [35] Projective limits of locally symmetric spaces and cohomology
    Rohlfs, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 479 : 149 - 182
  • [36] String cohomology groups of complex projective spaces
    Ottosen, Iver
    Boekstedt, Marcel
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 2165 - 2238
  • [37] On the cohomology of the classifying spaces of projective unitary groups
    Gu, Xing
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2021, 13 (02) : 535 - 573
  • [38] COHOMOLOGY OF TWISTED PROJECTIVE SPACES AND LENS COMPLEXES
    KAWASAKI, T
    MATHEMATISCHE ANNALEN, 1973, 206 (03) : 243 - 248
  • [39] WEIGHTED PROJECTIVE SPACES AND ITERATED THOM SPACES
    Bahri, Anthony
    Franz, Matthias
    Ray, Nigel
    OSAKA JOURNAL OF MATHEMATICS, 2014, 51 (01) : 89 - 119
  • [40] PROJECTIVE QUANTUM SPACES
    MEYER, U
    LETTERS IN MATHEMATICAL PHYSICS, 1995, 35 (02) : 91 - 97