Pricing Vulnerable Options with Correlated Credit Risk Under Jump-diffusion Processes When Corporate Liabilities Are Random

被引:10
|
作者
Zhou, Qing [1 ]
Yang, Jiao-jiao [1 ]
Wu, Wei-xing [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Univ Int Business & Econ, Sch Banking & Finance, Beijing 100029, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
vulnerable option; default; credit risk; pricing; jump-diffusion;
D O I
10.1007/s10255-019-0821-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an improved model of pricing vulnerable options with credit risk. We assume that the vulnerable European options not only face default risk, but also face the rare shocks of the underlying assets and the counterparty assets. The dynamics of two correlated assets are modeled as a class of jump diffusion processes. Furthermore, we assume that the dynamic of the corporate liability is a geometric Brownian motion that is related to the underlying asset and the counterparty asset. Under this new framework, we give an explicit pricing formula of the vulnerable European options.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 50 条
  • [41] Valuing basket-spread options with default risk under Hawkes jump-diffusion processes
    Li, Zelei
    Tang, Dan
    Wang, Xingchun
    EUROPEAN JOURNAL OF FINANCE, 2023, 29 (12): : 1406 - 1431
  • [42] A fast high-order sinc-based algorithm for pricing options under jump-diffusion processes
    Liu, Jun
    Sun, Hai-Wei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (10) : 2163 - 2184
  • [43] A simulation-based Credit Default Swap pricing approach under jump-diffusion
    Joro, TA
    Na, P
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 360 - 363
  • [44] Risk Analysis and Hedging of Parisian Options under a Jump-Diffusion Model
    Kim, Kyoung-Kuk
    Lim, Dong-Young
    JOURNAL OF FUTURES MARKETS, 2016, 36 (09) : 819 - 850
  • [45] Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models
    Ron Tat Lung Chan
    Computational Economics, 2016, 47 : 623 - 643
  • [46] Optimal Dividend Payouts Under Jump-Diffusion Risk Processes
    Zou, Jiezhong
    Zhang, Zhenzhong
    Zhang, Jiankang
    STOCHASTIC MODELS, 2009, 25 (02) : 332 - 347
  • [47] Finite Volume Method for Pricing European and American Options under Jump-Diffusion Models
    Gan, Xiao-Ting
    Yin, Jun-Feng
    Guo, Yun-Xiang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (02) : 227 - 247
  • [48] An RBF-FD method for pricing American options under jump-diffusion models
    Haghi, Majid
    Mollapourasl, Reza
    Vanmaele, Michele
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (10) : 2434 - 2459
  • [49] A meshless method for Asian style options pricing under the Merton jump-diffusion model
    Saib, A. A. E. F.
    Sunhaloo, M. S.
    Bhuruth, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (12) : 2498 - 2514
  • [50] Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models
    Chan, Ron Tat Lung
    COMPUTATIONAL ECONOMICS, 2016, 47 (04) : 623 - 643