Pricing Vulnerable Options with Correlated Credit Risk Under Jump-diffusion Processes When Corporate Liabilities Are Random

被引:10
|
作者
Zhou, Qing [1 ]
Yang, Jiao-jiao [1 ]
Wu, Wei-xing [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Univ Int Business & Econ, Sch Banking & Finance, Beijing 100029, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
vulnerable option; default; credit risk; pricing; jump-diffusion;
D O I
10.1007/s10255-019-0821-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an improved model of pricing vulnerable options with credit risk. We assume that the vulnerable European options not only face default risk, but also face the rare shocks of the underlying assets and the counterparty assets. The dynamics of two correlated assets are modeled as a class of jump diffusion processes. Furthermore, we assume that the dynamic of the corporate liability is a geometric Brownian motion that is related to the underlying asset and the counterparty asset. Under this new framework, we give an explicit pricing formula of the vulnerable European options.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 50 条
  • [31] An iterative method for pricing American options under jump-diffusion models
    Salmi, Santtu
    Toivanen, Jari
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (07) : 821 - 831
  • [32] The Pricing, Credit Risk Decomposition and Hedging Analysis of CPDOs under the Levy Jump-Diffusion Model
    Chiang, Mi-Hsiu
    Fu, Hsin-Hao
    Wang, Sheng-Yuan
    NTU MANAGEMENT REVIEW, 2012, 23 (01): : 327 - 361
  • [33] Pricing black-scholes options with correlated credit risk and jump risk
    Xu, Weidong
    Xu, Weijun
    Xiao, Weilin
    APPLIED ECONOMICS LETTERS, 2015, 22 (02) : 87 - 93
  • [34] Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options
    Cai, Ning
    Chen, Nan
    Wan, Xiangwei
    MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) : 412 - 437
  • [35] Pricing American Options by Willow Tree Method Under Jump-Diffusion Process
    Xu, Wei
    Yin, Yufang
    JOURNAL OF DERIVATIVES, 2014, 22 (01): : 46 - 56
  • [36] DG Method for Pricing European Options under Merton Jump-Diffusion Model
    Jiří Hozman
    Tomáš Tichý
    Miloslav Vlasák
    Applications of Mathematics, 2019, 64 : 501 - 530
  • [37] DG Method for Pricing European Options under Merton Jump-Diffusion Model
    Hozman, Jiri
    Tichy, Tomas
    Vlasak, Miloslav
    APPLICATIONS OF MATHEMATICS, 2019, 64 (05) : 501 - 530
  • [38] Pricing options under a generalized Markov-modulated jump-diffusion model
    Elliott, Robert J.
    Siu, Tak Kuen
    Chan, Leunglung
    Lau, John W.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (04) : 821 - 843
  • [39] European vulnerable options pricing under sub-mixed fractional jump-diffusion model with stochastic interest rate
    Guo, Jingjun
    Wang, Yubing
    Kang, Weiyi
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [40] Pricing European call options with default risk under a jump-diffusion model via FFT transform
    Wu, Sang
    Xu, Chao
    Dong, Yinghui
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (43): : 268 - 278