Palindromes in the free metabelian Lie algebras

被引:10
|
作者
Findik, Sehmus [1 ]
Oguslu, Nazar Sahin [1 ]
机构
[1] Cukurova Univ, Dept Math, TR-01330 Adana, Turkey
关键词
Free metabelian Lie algebras; palindromes; AUTOMORPHISMS;
D O I
10.1142/S0218196719500334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A palindrome, in general, is a word in a fixed alphabet which is preserved when taken in reverse order. Let F-2 be the free metabelian Lie algebra over a field of characteristic zero generated by x(1), x(2). We propose the following definition of palindromes in the setting of Lie algebras: An element f(x(1), x(2)) is an element of F-2 is called a palindrome if it is preserved under the change of generators; i.e. f(x(1), x(2)) = f(x(2), x(1)). We give a linear basis and an explicit infinite generating set for the Lie subalgebra of palindromes.
引用
收藏
页码:885 / 891
页数:7
相关论文
共 50 条
  • [31] STRUCTURE OF SECOND COHOMOLOGY SPACE OF FREE METABELIAN LIE-ALGEBRAS
    CONOD, S
    DELAHARPE, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (13): : 865 - 867
  • [32] METABELIAN LIE U-ALGEBRAS
    Daniyarova, E. Y.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 355 - 382
  • [33] Embedding properties of metabelian Lie algebras and metabelian discrete groups
    Groves, J. R. J.
    Kochloukova, D. H.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 : 475 - 492
  • [34] Symmetric polynomials in free center-by-metabelian Lie algebras of rank 2
    Kofinas, C. E.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2024, 34 (01) : 1 - 21
  • [35] Classification of metabelian Lie algebras of maximal rank
    Fernández-Ternero, D
    Núñez-Valdés, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (11): : 969 - 974
  • [36] DUALITY THEORIES FOR METABELIAN LIE-ALGEBRAS
    GAUGER, MA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 187 (01) : 89 - 102
  • [37] PROJECTIVE METABELIAN GROUPS AND LIE-ALGEBRAS
    ARTAMONOV, VA
    MATHEMATICS OF THE USSR-IZVESTIYA, 1978, 12 (02): : 213 - 223
  • [38] A note on Lie centrally metabelian group algebras
    Sahai, M
    Srivastava, JB
    JOURNAL OF ALGEBRA, 1997, 187 (01) : 7 - 15
  • [39] Lie metabelian restricted universal enveloping algebras
    Siciliano, S
    Spinelli, E
    ARCHIV DER MATHEMATIK, 2005, 84 (05) : 398 - 405
  • [40] Finitely presented metabelian restricted Lie algebras
    Kochloukova, Dessislava H.
    Leon, Adriana Juzga
    JOURNAL OF ALGEBRA, 2020, 560 : 1107 - 1145