Palindromes in the free metabelian Lie algebras

被引:10
|
作者
Findik, Sehmus [1 ]
Oguslu, Nazar Sahin [1 ]
机构
[1] Cukurova Univ, Dept Math, TR-01330 Adana, Turkey
关键词
Free metabelian Lie algebras; palindromes; AUTOMORPHISMS;
D O I
10.1142/S0218196719500334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A palindrome, in general, is a word in a fixed alphabet which is preserved when taken in reverse order. Let F-2 be the free metabelian Lie algebra over a field of characteristic zero generated by x(1), x(2). We propose the following definition of palindromes in the setting of Lie algebras: An element f(x(1), x(2)) is an element of F-2 is called a palindrome if it is preserved under the change of generators; i.e. f(x(1), x(2)) = f(x(2), x(1)). We give a linear basis and an explicit infinite generating set for the Lie subalgebra of palindromes.
引用
收藏
页码:885 / 891
页数:7
相关论文
共 50 条