Atmospheric discharges and particle fluxes

被引:16
|
作者
Chilingarian, A. [1 ]
Chilingaryan, S. [1 ,2 ]
Reymers, A. [1 ]
机构
[1] Yerevan Phys Inst, Yerevan 375036, Armenia
[2] Karlsruhe Inst Technol, IPE, D-76021 Karlsruhe, Germany
关键词
THUNDERCLOUD;
D O I
10.1002/2015JA021259
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Fluxes of the electrons, gamma rays, and neutrons observed by particle detectors located on the Earth's surface during thunderstorms originate so-called Thunderstorm Ground Enhancements (TGEs). The relativistic runaway electron avalanches giving rise to TGEs originate in the thundercloud's lower dipole between the main negatively charged region in the middle of the thundercloud and transient lower positively charged region. Acceleration of electrons in the upper dipole between main negative and main positive charge regions leads to initiation of the terrestrial gamma flashes (TGFs) intensive researched during the last two decades by orbiting gamma ray observatories. TGFs are exceptionally intense, submillisecond bursts of electromagnetic radiation directed to the open space from the thunderstorm atmosphere. Unlike visible lightning, TGF beams do not create a hot plasma channel and optical flash; hence, in the literature they got name dark lightning. We investigate the TGEs development in 1min and 1s time series of particle detector count rates. Synchronized time series of the near-surface electric field and lightning occurrences allows interconnecting two atmospheric phenomena. Registration of the Extensive Air Showers allows approaching problems of relation of the lightning occurrences and particle fluxes.
引用
收藏
页码:5845 / 5853
页数:9
相关论文
共 50 条
  • [41] Effect of continuously flowing liquid Li limiter on particle and heat fluxes during H-mode discharges in EAST
    Zuo, G.Z.
    Li, C.L.
    Maingi, R.
    Meng, X.C.
    Andruczyk, D.
    Sun, P.J.
    Sun, Z.
    Xu, W.
    Huang, M.
    Tang, Z.L.
    Zhang, D.H.
    Chen, Y.J.
    Zang, Q.
    Wang, Y.M.
    Wang, Y.F.
    Tritz, K.
    Hu, J.S.
    Nuclear Materials and Energy, 2022, 33
  • [42] Power and particle fluxes to plasma-facing components in mitigated-ELM H-mode discharges on JET
    Jachmich, S.
    Arnoux, G.
    Brezinsek, S.
    Devaux, S.
    Eich, T.
    Fundamenski, W.
    Giroud, C.
    Koslowski, H. R.
    Liang, Y.
    de la Luna, E.
    Maddison, G.
    Thomsen, H.
    JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) : S894 - S900
  • [43] Calculating the Spectral Brightness of Atmospheric Discharges
    Yu. A. Plastinin
    I. Yu. Skryabysheva
    Measurement Techniques, 2016, 58 : 1330 - 1335
  • [44] ACTIVE CONTROL OF ATMOSPHERIC PRESSURE DISCHARGES
    Slama, J.
    Bauer, J.
    Fligl, S.
    Kriha, V.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, (01): : 246 - 248
  • [45] Lightning and middle atmospheric discharges in the atmosphere
    Siingh, Devendraa
    Singh, R. P.
    Kumar, Sarvan
    Dharmaraj, T.
    Singh, Abhay K.
    Singh, Ashok K.
    Patil, M. N.
    Singh, Shubha
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2015, 134 : 78 - 101
  • [46] Characteristics of atmospheric dustfall fluxes and particle size in an open pit coal mining area and surrounding areas
    Deng, Yayuan
    Wu, Hongxuan
    Zhao, Tingning
    Shi, Changqing
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [47] Calculating the Spectral Brightness of Atmospheric Discharges
    Plastinin, Yu. A.
    Skryabysheva, I. Yu.
    MEASUREMENT TECHNIQUES, 2016, 58 (12) : 1330 - 1335
  • [48] Theory of microwave discharges at atmospheric pressures
    Timofeev, AV
    PLASMA PHYSICS REPORTS, 1997, 23 (02) : 158 - 164
  • [49] DC discharges in atmospheric air and their transitions
    Machala, Zdenko
    Jedlovsky, Igor
    Martisovits, Viktor
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (04) : 918 - 919
  • [50] PRODUCTION OF ATMOSPHERIC OZONE BY SILENT DISCHARGES
    PAPETLEP.J
    VASSY, A
    ANNALES DE GEOPHYSIQUE, 1969, 25 (01): : 153 - +