Atmospheric discharges and particle fluxes

被引:16
|
作者
Chilingarian, A. [1 ]
Chilingaryan, S. [1 ,2 ]
Reymers, A. [1 ]
机构
[1] Yerevan Phys Inst, Yerevan 375036, Armenia
[2] Karlsruhe Inst Technol, IPE, D-76021 Karlsruhe, Germany
关键词
THUNDERCLOUD;
D O I
10.1002/2015JA021259
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Fluxes of the electrons, gamma rays, and neutrons observed by particle detectors located on the Earth's surface during thunderstorms originate so-called Thunderstorm Ground Enhancements (TGEs). The relativistic runaway electron avalanches giving rise to TGEs originate in the thundercloud's lower dipole between the main negatively charged region in the middle of the thundercloud and transient lower positively charged region. Acceleration of electrons in the upper dipole between main negative and main positive charge regions leads to initiation of the terrestrial gamma flashes (TGFs) intensive researched during the last two decades by orbiting gamma ray observatories. TGFs are exceptionally intense, submillisecond bursts of electromagnetic radiation directed to the open space from the thunderstorm atmosphere. Unlike visible lightning, TGF beams do not create a hot plasma channel and optical flash; hence, in the literature they got name dark lightning. We investigate the TGEs development in 1min and 1s time series of particle detector count rates. Synchronized time series of the near-surface electric field and lightning occurrences allows interconnecting two atmospheric phenomena. Registration of the Extensive Air Showers allows approaching problems of relation of the lightning occurrences and particle fluxes.
引用
收藏
页码:5845 / 5853
页数:9
相关论文
共 50 条
  • [31] Uncertainties in atmospheric neutrino fluxes
    Barr, G. D.
    Robbins, S.
    Gaisser, T. K.
    Stanev, T.
    PHYSICAL REVIEW D, 2006, 74 (09):
  • [32] Atmospheric neutrino and muon fluxes
    Sanuki, T.
    Haino, S.
    Abe, K.
    Honda, M.
    Kajita, T.
    Okada, A.
    Kasahara, K.
    Midorikawa, S.
    Proceedings of the 29th International Cosmic Ray Conference Vol 9: HE 2, 2005, : 139 - 142
  • [33] CALCULATION OF ATMOSPHERIC NEUTRINO FLUXES
    KAWASAKI, M
    MIZUTA, S
    PHYSICAL REVIEW D, 1991, 43 (09): : 2900 - 2908
  • [34] Atmospheric neutrino and muon fluxes
    Honda, Morihiro
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 : A281 - A290
  • [35] The prediction of the atmospheric neutrino fluxes
    Lipari, P
    COSMIC RADIATIONS: FROM ASTRONOMY TO PARTICLE PHYSICS, 2001, 42 : 107 - 116
  • [36] Uncertainty of the atmospheric neutrino fluxes
    Honda, M
    NEUTRINO PHYSICS AND ASTROP HYSICS, 1999, : 140 - 145
  • [37] Uncertainty of the atmospheric neutrino fluxes
    Honda, M
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 77 : 140 - 145
  • [38] Particle-in-cell and global simulations of α to γ transition in atmospheric pressure Penning-dominated capacitive discharges
    Kawamura, E.
    Lieberman, M. A.
    Lichtenberg, A. J.
    Chabert, P.
    Lazzaroni, C.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (03):
  • [39] Atmospheric net fluxes inferred from CERES/SARB fluxes
    Rutan, D
    Charlock, TP
    11TH CONFERENCE ON ATMOSPHERIC RADIATION, 2002, : 156 - 159
  • [40] Effect of continuously flowing liquid Li limiter on particle and heat fluxes during H-mode discharges in EAST
    Zuo, G. Z.
    Li, C. L.
    Maingi, R.
    Meng, X. C.
    Andruczyk, D.
    Sun, P. J.
    Sun, Z.
    Xu, W.
    Huang, M.
    Tang, Z. L.
    Zhang, D. H.
    Chen, Y. J.
    Zang, Q.
    Wang, Y. M.
    Wang, Y. F.
    Tritz, K.
    Hu, J. S.
    NUCLEAR MATERIALS AND ENERGY, 2022, 33