Cramer-Rao bound for time-continuous measurements in linear Gaussian quantum systems

被引:21
|
作者
Genoni, Marco G. [1 ]
机构
[1] Univ Milan, Dipartimento Fis, Quantum Technol Lab, I-20133 Milan, Italy
关键词
FISHER INFORMATION MATRIX; ENHANCED METROLOGY; MODELS; INVARIANCE; LIMIT;
D O I
10.1103/PhysRevA.95.012116
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe a compact and reliablemethod to calculate the Fisher information for the estimation of a dynamical parameter in a continuously measured linear Gaussian quantum system. Unlike previous methods in the literature, which involve the numerical integration of a stochastic master equation for the corresponding density operator in a Hilbert space of infinite dimension, the formulas here derived depend only on the evolution of first and second moments of the quantum states and thus can be easily evaluated without the need of any approximation. We also present some basic but physically meaningful examples where this result is exploited, calculating analytical and numerical bounds on the estimation of the squeezing parameter for a quantum parametric amplifier and of a constant force acting on a mechanical oscillator in a standard optomechanical scenario.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] An approximate quantum Cramer-Rao bound based on skew information
    Luati, Alessandra
    BERNOULLI, 2011, 17 (02) : 628 - 642
  • [42] LIKELIHOOD SENSITIVITY AND THE CRAMER-RAO BOUND
    GARDNER, WA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (04) : 491 - 491
  • [43] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    WIJSMAN, RA
    ANNALS OF STATISTICS, 1973, 1 (03): : 538 - 542
  • [44] A TIGHTER BAYESIAN CRAMER-RAO BOUND
    Bacharach, Lucien
    Fritsche, Carsten
    Orguner, Umut
    Chaumette, Eric
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5277 - 5281
  • [45] The Constrained Misspecified Cramer-Rao Bound
    Fortunati, Stefano
    Gini, Fulvio
    Greco, Maria S.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (05) : 718 - 721
  • [46] The Cramer-Rao Bound for Continuous-Time Autoregressive Parameter Estimation with Irregular Sampling
    Erik G. Larsson
    Erik K. Larsson
    Circuits, Systems and Signal Processing, 2002, 21 : 581 - 601
  • [47] Coarrays, MUSIC, and the Cramer-Rao Bound
    Wang, Mianzhi
    Nehorai, Arye
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (04) : 933 - 946
  • [48] A variational interpretation of the Cramer-Rao bound
    Fauss, Michael
    Dytso, Alex
    Poor, H. Vincent
    SIGNAL PROCESSING, 2021, 182
  • [49] Measurement time dependency of asymptotic Cramer-Rao bound for an unknown constant in stationary Gaussian noise
    Fischer, Andreas
    Czarske, Juergen
    MEASUREMENT, 2015, 68 : 182 - 188
  • [50] On the asymptotic analysis of Cramer-Rao bound for time delay estimation
    Yin, CY
    Xu, SJ
    Wang, DJ
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 109 - 112