Cramer-Rao bound for time-continuous measurements in linear Gaussian quantum systems

被引:21
|
作者
Genoni, Marco G. [1 ]
机构
[1] Univ Milan, Dipartimento Fis, Quantum Technol Lab, I-20133 Milan, Italy
关键词
FISHER INFORMATION MATRIX; ENHANCED METROLOGY; MODELS; INVARIANCE; LIMIT;
D O I
10.1103/PhysRevA.95.012116
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe a compact and reliablemethod to calculate the Fisher information for the estimation of a dynamical parameter in a continuously measured linear Gaussian quantum system. Unlike previous methods in the literature, which involve the numerical integration of a stochastic master equation for the corresponding density operator in a Hilbert space of infinite dimension, the formulas here derived depend only on the evolution of first and second moments of the quantum states and thus can be easily evaluated without the need of any approximation. We also present some basic but physically meaningful examples where this result is exploited, calculating analytical and numerical bounds on the estimation of the squeezing parameter for a quantum parametric amplifier and of a constant force acting on a mechanical oscillator in a standard optomechanical scenario.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Cramer-Rao Bound on Passive Source Localization for General Gaussian Noise
    Li, Sha
    Daku, Brian L. F.
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2010, E93A (05) : 914 - 925
  • [32] RIEMANNIAN GEOMETRY AND CRAMER-RAO BOUND FOR BLIND SEPARATION OF GAUSSIAN SOURCES
    Bouchard, Florent
    Breloy, Arnaud
    Renaux, Alexandre
    Ginolhac, Guillaume
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4717 - 4721
  • [33] Learning to Bound: A Generative Cramer-Rao Bound
    Habi, Hai Victor
    Messer, Hagit
    Bresler, Yoram
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1216 - 1231
  • [34] FREQUENCY-DOMAIN CRAMER-RAO BOUND FOR GAUSSIAN-PROCESSES
    ZEIRA, A
    NEHORAI, A
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (06): : 1063 - 1066
  • [35] The Cramer-Rao bound for continuous-time autoregressive parameter estimation with irregular sampling
    Larsson, EG
    Larsson, EK
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2002, 21 (06) : 581 - 601
  • [36] CONCENTRATED CRAMER-RAO BOUND EXPRESSIONS
    HOCHWALD, B
    NEHORAI, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) : 363 - 371
  • [37] Cramer-Rao bound for gated PET
    Cloquet, Christophe
    Goldman, Serge
    Defrise, Michel
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2267 - 2272
  • [38] CRAMER-RAO BOUND FOR RANGE ESTIMATION
    Wang, Yiyin
    Leus, Geert
    van der Veen, Alle-Jan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3301 - 3304
  • [39] Bayesian Periodic Cramer-Rao Bound
    Routtenberg, Tirza
    Tabrikian, Joseph
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1878 - 1882
  • [40] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    JOSHI, VM
    ANNALS OF STATISTICS, 1976, 4 (05): : 998 - 1002