Preconditioning higher order finite element systems by algebraic multigrid method of linear elements

被引:1
|
作者
Yun-qing Huang [1 ]
Shi Shu
Xi-jun Yu
机构
[1] Xiangtan Univ, Inst Computat & Appl Math, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
关键词
finite element; algebraic multigrid methods; preconditioned conjugate gradient; condition number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.
引用
收藏
页码:657 / 664
页数:8
相关论文
共 50 条
  • [41] Higher order stable generalized finite element method
    Qinghui Zhang
    Uday Banerjee
    Ivo Babuška
    Numerische Mathematik, 2014, 128 : 1 - 29
  • [42] A higher-order equilibrium finite element method
    Olesen, K.
    Gervang, B.
    Reddy, J. N.
    Gerritsma, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (12) : 1262 - 1290
  • [43] An algebraic multigrid solver for finite element computations in solid mechanics
    Boersma, A.
    Wriggers, P.
    Engineering Computations (Swansea, Wales), 1997, 14 (02): : 202 - 215
  • [44] Higher order stable generalized finite element method
    Zhang, Qinghui
    Banerjee, Uday
    Babuska, Ivo
    NUMERISCHE MATHEMATIK, 2014, 128 (01) : 1 - 29
  • [45] An algebraic multigrid solver for finite element computations in solid mechanics
    Boersma, A
    Wriggers, P
    ENGINEERING COMPUTATIONS, 1997, 14 (2-3) : 202 - &
  • [46] A multigrid finite element method for reaction-diffusion systems on surfaces
    Landsberg, Christoph
    Voigt, Axel
    COMPUTING AND VISUALIZATION IN SCIENCE, 2010, 13 (04) : 177 - 185
  • [47] Higher order stabilized finite element method for hyperelastic finite deformation
    Maniatty, AM
    Liu, Y
    Klaas, O
    Shephard, MS
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (13-14) : 1491 - 1503
  • [48] Parallel multigrid preconditioning for finite element models of ground water flow
    Brieger, L
    Lecca, G
    COMPUTATIONAL METHODS IN WATER RESOURCES XI, VOL 1: COMPUTATIONAL METHODS IN SUBSURFACE FLOW AND TRANSPORT PROBLEMS, 1996, : 507 - 514
  • [49] Higher-order perturbation stochastic finite element method of the linear-elastic structure
    Chen, B. (larry2000545@163.com), 1600, Sichuan University (46):
  • [50] Strategies with Algebraic Multigrid Method for Coupled Systems
    Konshin, I.
    Terekhov, K.
    Vassilevski, Yu.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (01) : 251 - 261