Preconditioning higher order finite element systems by algebraic multigrid method of linear elements

被引:1
|
作者
Yun-qing Huang [1 ]
Shi Shu
Xi-jun Yu
机构
[1] Xiangtan Univ, Inst Computat & Appl Math, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
关键词
finite element; algebraic multigrid methods; preconditioned conjugate gradient; condition number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.
引用
收藏
页码:657 / 664
页数:8
相关论文
共 50 条
  • [31] Accelerating the Convergence of Algebraic Multigrid for Quadratic Finite Element Method by Using Grid Information and p-Multigrid
    Zhuang, Chijie
    Zeng, Rong
    Zhang, Bo
    Chen, Shuiming
    He, Jinliang
    IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (05) : 1198 - 1201
  • [32] An all-at-once algebraic multigrid method for finite element discretizations of Stokes problem
    Bacq, Pierre-Loic
    Gounand, Stephane
    Napov, Artem
    Notay, Yvan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2023, 95 (02) : 193 - 214
  • [33] Algebraic multigrid method for nonsymmetric matrices arising in electromagnetic finite-element analyses
    Mifune, T
    Iwashita, T
    Shimasaki, M
    IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (03) : 1670 - 1673
  • [34] Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs
    De Sterck, H
    Manteuffel, TA
    McCormick, SF
    Olson, L
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (01): : 31 - 54
  • [35] An algebraic multigrid approach to solve extended finite element method based fracture problems
    Gerstenberger, Axel
    Tuminaro, Raymond S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 94 (03) : 248 - 272
  • [36] Multigrid for the mortar finite element method
    Gopalakrishnan, J
    Pasciak, JE
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 1029 - 1052
  • [37] A method of extended finite elements of optimal higher order
    Laborde, Patrick
    Pommier, Julien
    Renard, Yves
    Salan, Michel
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2006, 15 (1-3): : 233 - 244
  • [38] An isoparametric tangled finite element method for handling higher-order elements with negative Jacobian
    Prabhune, Bhagyashree
    Suresh, Krishnan
    COMPUTATIONAL MECHANICS, 2024, 73 (01) : 159 - 176
  • [39] On the application of higher-order elements in the hierarchical interface-enriched finite element method
    Soghrati, Soheil
    Barrera, Jorge L.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 105 (06) : 403 - 415
  • [40] An isoparametric tangled finite element method for handling higher-order elements with negative Jacobian
    Bhagyashree Prabhune
    Krishnan Suresh
    Computational Mechanics, 2024, 73 : 159 - 176