Discrete localized states and localization dynamics in discrete nonlinear Schrodinger equations

被引:18
|
作者
Christiansen, PL
Gaididei, YB
Mezentsev, VK
Musher, SL
Rasmussen, KO
Rasmussen, JJ
Ryzhenkova, IV
Turitsyn, SK
机构
[1] INST THEORET PHYS,UA-252143 KIEV,UKRAINE
[2] RUSSIAN ACAD SCI,INST AUTOMAT & ELECTROMETRY,NOVOSIBIRSK 630090,RUSSIA
[3] RISO NATL LAB,OPT & FLUID DYNAM DEPT,DK-4000 ROSKILDE,DENMARK
[4] UNIV DUSSELDORF,INST THEORET PHYS 1,D-40225 DUSSELDORF,GERMANY
来源
PHYSICA SCRIPTA | 1996年 / T67卷
关键词
D O I
10.1088/0031-8949/1996/T67/032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions are examined. The importance of the existence of stable immobile solitons in the two-dimensional dynamics of the travelling pulses is demonstrated. The process of forming narrow states from initially broad standing or moving excitations through the quasi-collapse mechanism is analyzed. The typical scenario of the two-dimensional quasi-collapse of a moving intense pulse is the formation of pinned narrow spikes.
引用
收藏
页码:160 / 166
页数:7
相关论文
共 50 条
  • [41] A study of a new class of discrete nonlinear Schrodinger equations
    Kundu, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (38): : 8109 - 8133
  • [42] Discrete analogues for two nonlinear Schrodinger type equations
    Zhao, Song-lin
    Feng, Wei
    Jin, Yong-yang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 329 - 341
  • [43] Spatial Disorder Of Coupled Discrete Nonlinear Schrodinger Equations
    Shieh, Shih-Feng
    WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II, 2009, : 940 - 944
  • [44] On classification of intrinsic localized modes for the discrete nonlinear Schrodinger equation
    Alfimov, GL
    Brazhnyi, VA
    Konotop, VV
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) : 127 - 150
  • [45] Exact localized solutions of quintic discrete nonlinear Schrodinger equation
    Maruno, KI
    Ohta, Y
    Joshi, N
    PHYSICS LETTERS A, 2003, 311 (2-3) : 214 - 220
  • [46] ON THE ASYMPTOTIC STABILITY OF LOCALIZED MODES IN THE DISCRETE NONLINEAR SCHRODINGER EQUATION
    Mizumachi, Tetsu
    Pelinovsky, Dmitry
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (05): : 971 - 987
  • [47] On localized solutions of discrete nonlinear Schrodinger equation - An exact result
    Pacciani, P
    Konotop, VV
    Menzala, GP
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 204 (1-2) : 122 - 133
  • [48] Dynamics in discrete two-dimensional nonlinear Schrodinger equations in the presence of point defects
    Christiansen, PL
    Gaididei, YB
    Rasmussen, KO
    Mezentsev, VK
    Rasmussen, JJ
    PHYSICAL REVIEW B, 1996, 54 (02) : 900 - 912
  • [49] Existence of discrete solitons in discrete nonlinear Schrodinger equations with non-weak couplings
    Yoshimura, Kazuyuki
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 33 (02) : 379 - 400
  • [50] The Hamiltonian dynamics of the soliton of the discrete nonlinear Schrodinger equation
    Kosevich, AM
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2001, 92 (05) : 866 - 870