Discrete localized states and localization dynamics in discrete nonlinear Schrodinger equations

被引:18
|
作者
Christiansen, PL
Gaididei, YB
Mezentsev, VK
Musher, SL
Rasmussen, KO
Rasmussen, JJ
Ryzhenkova, IV
Turitsyn, SK
机构
[1] INST THEORET PHYS,UA-252143 KIEV,UKRAINE
[2] RUSSIAN ACAD SCI,INST AUTOMAT & ELECTROMETRY,NOVOSIBIRSK 630090,RUSSIA
[3] RISO NATL LAB,OPT & FLUID DYNAM DEPT,DK-4000 ROSKILDE,DENMARK
[4] UNIV DUSSELDORF,INST THEORET PHYS 1,D-40225 DUSSELDORF,GERMANY
来源
PHYSICA SCRIPTA | 1996年 / T67卷
关键词
D O I
10.1088/0031-8949/1996/T67/032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions are examined. The importance of the existence of stable immobile solitons in the two-dimensional dynamics of the travelling pulses is demonstrated. The process of forming narrow states from initially broad standing or moving excitations through the quasi-collapse mechanism is analyzed. The typical scenario of the two-dimensional quasi-collapse of a moving intense pulse is the formation of pinned narrow spikes.
引用
收藏
页码:160 / 166
页数:7
相关论文
共 50 条
  • [31] Discrete artificial boundary conditions for nonlinear Schrodinger equations
    Zisowsky, Andrea
    Ehrhardt, Matthias
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) : 1264 - 1283
  • [32] Nature of transitions in augmented discrete nonlinear Schrodinger equations
    Amritkar, RE
    Kenkre, VM
    PHYSICAL REVIEW E, 1999, 59 (06): : 6306 - 6311
  • [33] Gap solitons in periodic discrete nonlinear Schrodinger equations
    Pankov, A
    NONLINEARITY, 2006, 19 (01) : 27 - 40
  • [34] An Alternative Approach to Integrable Discrete Nonlinear Schrodinger Equations
    Demontis, Francesco
    van der Mee, Cornelis
    ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 169 - 191
  • [35] Compact Discrete Gradient Schemes for Nonlinear Schrodinger Equations
    Yin, Xiuling
    Zhang, Chengjian
    Zhang, Jingjing
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (01) : 1 - 7
  • [36] Fractional integrable and related discrete nonlinear Schrodinger equations
    Ablowitz, Mark J.
    Been, Joel B.
    Carr, Lincoln D.
    PHYSICS LETTERS A, 2022, 452
  • [37] EXISTENCE OF MULTIPLE BREATHERS FOR DISCRETE NONLINEAR SCHRODINGER EQUATIONS
    Zhou, Tao
    Liu, Xia
    Shi, Haiping
    Wen, Zongliang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [38] Multiple solutions for discrete periodic nonlinear Schrodinger equations
    Sun, Jijiang
    Ma, Shiwang
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [39] Multibump solutions for discrete periodic nonlinear Schrodinger equations
    Ma, Shiwang
    Wang, Zhi-Qiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (05): : 1413 - 1442
  • [40] On Standing Wave Solutions for Discrete Nonlinear Schrodinger Equations
    Sun, Guowei
    ABSTRACT AND APPLIED ANALYSIS, 2013,