Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode

被引:56
|
作者
Tian, Guiying [1 ]
Zhao, Zijian [1 ]
Sarapulova, Angelina [1 ]
Das, Chittaranjan [1 ]
Zhu, Lihua [1 ]
Liu, Suya [2 ,3 ]
Missiul, Aleksandr [4 ]
Welter, Edmund [5 ]
Maibach, Julia [1 ]
Dsoke, Sonia [1 ,6 ]
机构
[1] KIT, IAM, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Zhejiang Univ ZJU, ICNSM, Zheda Rd 38, Hangzhou 310027, Peoples R China
[3] KIT, Inst Nanotechnol INT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[4] CELLS ALBA, Carrer Llum 2-26, Barcelona 08290, Spain
[5] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
[6] Helmholtz Inst Ulm Electrochem Energy Storage HIU, Helmholtzstr 11, D-89081 Ulm, Germany
关键词
LITHIUM-ION; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; DOPED CARBON; NANOPARTICLES; SPECTROSCOPY; CONVERSION; INTERFACE; BATTERIES; ZNS;
D O I
10.1039/c9ta01382b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfide compounds are interesting conversion electrode materials for Li-ion batteries, due to their high theoretical capacity. However, they suffer from large volumetric changes and fast capacity fading. To overcome these issues, nanosized zinc sulfide (ZnS) modified with polyelectrolytes and graphene (ZnS-C/G) has been synthesized and investigated as an enhanced conversion-alloying anode material. In situ synchrotron X-ray diffraction and X-ray absorption spectroscopy are used to elucidate the Li storage process during the 1st cycle. In addition, the evolution of internal resistance and the corresponding solid electrolyte interphase (SEI) formation during the 1st cycle are discussed based on electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The results reveal that the formation of lithiated products and the SEI layer at different voltages can influence Li+ diffusion into the electrode. Moreover, an artificial carbon layer can not only facilitate Li+ transport but also avoid the direct formation of the SEI layer on the surface of active particles. Compared to bare ZnS, the ZnS-C/G electrode shows outstanding rate capability and cycling capacity (571 mA h g(-1) after 120 cycles at a specific current of 1.0 A g(-1) with a retention rate of 94.4%). The high capacity at elevated current density is ascribed to the contribution of capacitive charge storage.
引用
收藏
页码:15640 / 15653
页数:14
相关论文
共 50 条
  • [31] Chalcogels as electrode materials for Li-ion batteries
    Doan-Nguyen, Vicky V. T.
    Subrahmanyam, Kota S.
    Butala, Megan M.
    Gerbec, Jeffrey A.
    Islam, Saiful M.
    Kanipe, Katherine N.
    Wilson, Catrina E.
    Balasubramanian, Mahalingam
    Wiaderek, Kamila M.
    Borkiewicz, Olaf J.
    Chapman, Karena W.
    Chupas, Peter J.
    Moskovits, Martin
    Dunn, Bruce S.
    Kanatzidis, Mercouri G.
    Seshadri, Ram
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : A123 - A124
  • [32] Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes
    Zhang, Xiao
    Hui, Zeyu
    King, Steven
    Wang, Lei
    Ju, Zhengyu
    Wu, Jingyi
    Takeuchi, Kenneth J.
    Marschilok, Amy C.
    West, Alan C.
    Takeuchi, Esther S.
    Yu, Guihua
    NANO LETTERS, 2021, 21 (13) : 5896 - 5904
  • [33] Improving the Li-Ion Storage Performance of Layered Zinc Silicate through the Interlayer Carbon and Reduced Graphene Oxide Networks
    Qu, Jin
    Yan, Yang
    Yin, Ya-Xia
    Guo, Yu-Guo
    Song, Wei-Guo
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (12) : 5777 - 5782
  • [34] Positive Electrode Materials for Li-Ion and Li-Batteries
    Ellis, Brian L.
    Lee, Kyu Tae
    Nazar, Linda F.
    CHEMISTRY OF MATERIALS, 2010, 22 (03) : 691 - 714
  • [35] Phase Transformation Mechanism of Li-Ion Storage in Iron(III) Hydroxide Phosphates
    Henriksen, Christian
    Wegeberg, Christina
    Ravnsbaek, Dorthe B.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (04): : 1930 - 1938
  • [36] Micro Li-ion capacitor with activated carbon/graphite configuration for energy storage
    Li, Siwei
    Wang, Xiaohong
    JOURNAL OF POWER SOURCES, 2015, 282 : 394 - 400
  • [37] Transition metal nanoparticles anchored on carbon anodes for advanced Li-ion storage
    Etacheri, Vinodkumar
    Hong, Chulgi
    Pol, Vilas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [38] Carbon Microstructure Dependent Li-Ion Storage Behaviors in SiOx/C Anodes
    Sun, Qing
    Li, Jing
    Yang, Maoxiang
    Wang, Shang
    Zeng, Guifang
    Liu, Hongbin
    Cheng, Jun
    Li, Deping
    Wei, Youri
    Si, Pengchao
    Tian, Yanhong
    Ci, Lijie
    SMALL, 2023, 19 (25)
  • [39] Study on modification methods to improve Li-Ion storage capacity of carbon black
    Xu, Guiying
    Wang, Kun
    Han, Beibei
    Chen, Shaobei
    Ju, Dongying
    Chai, Maorong
    Zhou, Weimin
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2021, 28
  • [40] Erratum: Computational understanding of Li-ion batteries
    Alexander Urban
    Dong-Hwa Seo
    Gerbrand Ceder
    npj Computational Materials, 2