Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode

被引:56
|
作者
Tian, Guiying [1 ]
Zhao, Zijian [1 ]
Sarapulova, Angelina [1 ]
Das, Chittaranjan [1 ]
Zhu, Lihua [1 ]
Liu, Suya [2 ,3 ]
Missiul, Aleksandr [4 ]
Welter, Edmund [5 ]
Maibach, Julia [1 ]
Dsoke, Sonia [1 ,6 ]
机构
[1] KIT, IAM, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Zhejiang Univ ZJU, ICNSM, Zheda Rd 38, Hangzhou 310027, Peoples R China
[3] KIT, Inst Nanotechnol INT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[4] CELLS ALBA, Carrer Llum 2-26, Barcelona 08290, Spain
[5] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
[6] Helmholtz Inst Ulm Electrochem Energy Storage HIU, Helmholtzstr 11, D-89081 Ulm, Germany
关键词
LITHIUM-ION; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; DOPED CARBON; NANOPARTICLES; SPECTROSCOPY; CONVERSION; INTERFACE; BATTERIES; ZNS;
D O I
10.1039/c9ta01382b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfide compounds are interesting conversion electrode materials for Li-ion batteries, due to their high theoretical capacity. However, they suffer from large volumetric changes and fast capacity fading. To overcome these issues, nanosized zinc sulfide (ZnS) modified with polyelectrolytes and graphene (ZnS-C/G) has been synthesized and investigated as an enhanced conversion-alloying anode material. In situ synchrotron X-ray diffraction and X-ray absorption spectroscopy are used to elucidate the Li storage process during the 1st cycle. In addition, the evolution of internal resistance and the corresponding solid electrolyte interphase (SEI) formation during the 1st cycle are discussed based on electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The results reveal that the formation of lithiated products and the SEI layer at different voltages can influence Li+ diffusion into the electrode. Moreover, an artificial carbon layer can not only facilitate Li+ transport but also avoid the direct formation of the SEI layer on the surface of active particles. Compared to bare ZnS, the ZnS-C/G electrode shows outstanding rate capability and cycling capacity (571 mA h g(-1) after 120 cycles at a specific current of 1.0 A g(-1) with a retention rate of 94.4%). The high capacity at elevated current density is ascribed to the contribution of capacitive charge storage.
引用
收藏
页码:15640 / 15653
页数:14
相关论文
共 50 条
  • [21] Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries
    Wang, Xiao Xia
    Wang, Jian Nong
    Chang, Hyuk
    Zhang, Ya Fei
    ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) : 3613 - 3618
  • [22] All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-Ion storage
    Li, Guo
    Ouyang, Ting
    Xiong, Tuzhi
    Jiang, Zhao
    Adekoya, David
    Wu, Yang
    Huang, Yongchao
    Balogun, M-Sadeeq
    CARBON, 2021, 174 : 1 - 9
  • [23] Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
    Gauthier, Magali
    Carney, Thomas J.
    Grimaud, Alexis
    Giordano, Livia
    Pour, Nir
    Chang, Hao-Hsun
    Fenning, David P.
    Lux, Simon F.
    Paschos, Odysseas
    Bauer, Christoph
    Magia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Shao-Horn, Yang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22): : 4653 - 4672
  • [24] A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes
    Zheng, Honghe
    Li, Jing
    Song, Xiangyun
    Liu, Gao
    Battaglia, Vincent S.
    ELECTROCHIMICA ACTA, 2012, 71 : 258 - 265
  • [25] Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries
    Xu, Jing
    Hu, Enyuan
    Nordlund, Dennis
    Mehta, Apurva
    Ehrlich, Steven N.
    Yang, Xiao-Qing
    Tong, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (46) : 31677 - 31683
  • [26] Mechanism Understanding of Li-ion Separation Using A Perovskite-Based Membrane
    Golmohammadi, Mahsa
    Habibi, Meysam
    Rezvantalab, Sima
    Mehdizadeh Chellehbari, Yasin
    Maleki, Reza
    Razmjou, Amir
    MEMBRANES, 2022, 12 (11)
  • [27] Nanostructured Electrode Materials for Li-ion Battery
    Balaya, Palani
    Saravanan, Kuppan
    Hariharan, Srirama
    ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS, 2010, 7683
  • [28] Effects of Electrode Curvature in Li-Ion Cells
    Schaefer, Robin
    Delz, Estefane
    Kasper, Michael
    Knoblauch, Volker
    Wohlfahrt-Mehrens, Margret
    Waldmann, Thomas
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (12)
  • [29] Understanding the Li-Ion storage mechanism of h-Zn2GeO4 nanoparticles: Experimental and theoretical studies
    Cosio-Aguilar, Gabriel
    Rodriguez, Jassiel R.
    Belman-Rodriguez, Carlos
    Ponce-Perez, R.
    Guerrero-Sanchez, Jonathan
    Guadalupe-Moreno, M.
    Vilchis, Rafael
    Aguirre, Sandra B.
    Martinez-Carreon, Maria J.
    Camacho-Lopez, Santiago
    ELECTROCHIMICA ACTA, 2025, 521
  • [30] Hyperbranched Polyphenylene as an Electrode for Li-Ion Batteries
    Lobo, Laurel Simon
    Matsumoto, Kazuya
    Jikei, Mitsutoshi
    Ikeda, Shun
    Okawa, Hirokazu
    ENERGY TECHNOLOGY, 2021, 9 (10)