SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGERY USING NEURAL NETWORK ALGORITHM AND HIERARCHICAL SEGMENTATION

被引:0
|
作者
Akbari, D. [1 ]
Moradizadeh, M. [2 ]
Akbari, M. [3 ]
机构
[1] Univ Zabol, Coll Engn, Dept Surveying & Geomat Engn, Zabol, Iran
[2] Univ Isfahan, Fac Civil & Transportat Engn, Dept Geomat, Esfahan, Iran
[3] Univ Birjand, Coll Engn, Dept Civil Engn, Birjand, Iran
关键词
Remote sensing; Hyperspectral image; neural network; Hierarchical segmentation; Marker selection;
D O I
10.5194/isprs-archives-XLII-2-W12-1-2019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a new framework for classification of hyperspectral images, based on both spectral and spatial information. The spatial information is obtained by an enhanced Marker-based Hierarchical Segmentation (MIN) algorithm. The hyperspectral data is first fed into the Multi-Layer Perceptron (MLP) neural network classification algorithm. Then, the MHS algorithm is applied in order to increase the accuracy of less-accurately classified land-cover types. In the proposed approach, the markers are extracted from the classification maps obtained by MLP and Support Vector Machines (SVM) classifiers. Experimental results on Washington DC Mall hyperspectral dataset, demonstrate the superiority of proposed approach compared to the MLP and the original MHS algorithms.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [41] Hierarchical Unified Spectral-Spatial Aggregated Transformer for Hyperspectral Image Classification
    Zhou, Weilian
    Kamata, Sei-Ichiro
    Luo, Zhengbo
    Chen, Xiaoyue
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3041 - 3047
  • [42] Spectral-spatial attention bilateral network for hyperspectral image classification
    Yang X.
    Chi Y.
    Zhou Y.
    Wang Y.
    National Remote Sensing Bulletin, 2023, 27 (11) : 2565 - 2578
  • [43] SPECTRAL-SPATIAL MULTISCALE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    He, Shi
    Jing, Haitao
    Xue, Huazhu
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 389 - 395
  • [44] Multipath Residual Network for Spectral-Spatial Hyperspectral Image Classification
    Meng, Zhe
    Li, Lingling
    Tang, Xu
    Feng, Zhixi
    Jiao, Licheng
    Liang, Miaomiao
    REMOTE SENSING, 2019, 11 (16)
  • [45] Spectral-Spatial Classification of Hyperspectral Image Using Autoencoders
    Lin, Zhouhan
    Chen, Yushi
    Zhao, Xing
    Wang, Gang
    2013 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2013,
  • [46] Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification
    Houari, Youcef Moudjib
    Duan, Haibin
    Zhang, Baochang
    Maher, Ali
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 221 - 225
  • [47] Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Zhu, Minghao
    Jiao, Licheng
    Liu, Fang
    Yang, Shuyuan
    Wang, Jianing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 449 - 462
  • [48] Spectral-Spatial Hyperspectral Image Classification via SVM and Superpixel Segmentation
    He, Zhi
    Shen, Yue
    Zhang, Miao
    Wang, Qiang
    Wang, Yan
    Yu, Renlong
    2014 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) PROCEEDINGS, 2014, : 422 - 427
  • [49] A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification
    Liao, Diling
    Shi, Cuiping
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [50] Hyperspectral Image Classification Based on Nonlinear Spectral-Spatial Network
    Pan, Bin
    Shi, Zhenwei
    Zhang, Ning
    Xie, Shaobiao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1782 - 1786