SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGERY USING NEURAL NETWORK ALGORITHM AND HIERARCHICAL SEGMENTATION

被引:0
|
作者
Akbari, D. [1 ]
Moradizadeh, M. [2 ]
Akbari, M. [3 ]
机构
[1] Univ Zabol, Coll Engn, Dept Surveying & Geomat Engn, Zabol, Iran
[2] Univ Isfahan, Fac Civil & Transportat Engn, Dept Geomat, Esfahan, Iran
[3] Univ Birjand, Coll Engn, Dept Civil Engn, Birjand, Iran
关键词
Remote sensing; Hyperspectral image; neural network; Hierarchical segmentation; Marker selection;
D O I
10.5194/isprs-archives-XLII-2-W12-1-2019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a new framework for classification of hyperspectral images, based on both spectral and spatial information. The spatial information is obtained by an enhanced Marker-based Hierarchical Segmentation (MIN) algorithm. The hyperspectral data is first fed into the Multi-Layer Perceptron (MLP) neural network classification algorithm. Then, the MHS algorithm is applied in order to increase the accuracy of less-accurately classified land-cover types. In the proposed approach, the markers are extracted from the classification maps obtained by MLP and Support Vector Machines (SVM) classifiers. Experimental results on Washington DC Mall hyperspectral dataset, demonstrate the superiority of proposed approach compared to the MLP and the original MHS algorithms.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] Spectral-Spatial Hyperspectral Image Classification Using Cascaded Convolutional Neural Networks
    Dovletov, Gurbandurdy
    Hegemann, Tobias
    Pauli, Josef
    IMAGE ANALYSIS, 2019, 11482 : 78 - 89
  • [32] Hyperspectral Imagery Classification based on Rotation Invariant Spectral-Spatial Feature
    Tao, Chao
    Jin, Jing
    Tang, Yuqi
    Zou, ZhengRong
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 422 - 424
  • [33] Spectral-Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques
    Tarabalka, Yuliya
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08): : 2973 - 2987
  • [34] Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    Yue, Jun
    Zhao, Wenzhi
    Mao, Shanjun
    Liu, Hui
    REMOTE SENSING LETTERS, 2015, 6 (06) : 468 - 477
  • [35] PIXEL DAG-RECURRENT NEURAL NETWORK FOR SPECTRAL-SPATIAL HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Xiufang
    Sun, Qigong
    Li, Lingling
    Ren, Zhongle
    Liu, Fang
    Jiao, Licheng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2718 - 2721
  • [36] Dimensionality-varied convolutional neural network for spectral-spatial classification of hyperspectral data
    Liu, Wanjun
    Liang, Xuejian
    Qu, Haicheng
    LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017, 2017, 10605
  • [37] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    NEUROCOMPUTING, 2019, 328 : 39 - 47
  • [38] Hyperspectral Image Classification Using Spectral-Spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    COMPUTER VISION, PT I, 2017, 771 : 577 - 588
  • [39] Hyperspectral classification based on spectral-spatial convolutional neural networks
    Chen, Congcong
    Jiang, Feng
    Yang, Chifu
    Rho, Seungmin
    Shen, Weizheng
    Liu, Shaohui
    Liu, Zhiguo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 68 : 165 - 171
  • [40] Patch-based hierarchical residual spectral-spatial convolutional network for hyperspectral image classification
    Zhao, Jinling
    Wu, Keke
    Zhang, Lu
    Huang, Wenjiang
    Ruan, Chao
    Huang, Linsheng
    SIGNAL PROCESSING, 2025, 230