On Robustness for Spatio-Temporal Data

被引:2
|
作者
Garcia-Perez, Alfonso [1 ]
机构
[1] Univ Nacl Educ Distancia UNED, Dept Estadist, IO & CN, Madrid 28040, Spain
关键词
robust statistics; spatio-temporal outliers; von Mises expansions; saddlepoint approximations; APPROXIMATIONS;
D O I
10.3390/math10101785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spatio-temporal variogram is an important factor in spatio-temporal prediction through kriging, especially in fields such as environmental sustainability or climate change, where spatio-temporal data analysis is based on this concept. However, the traditional spatio-temporal variogram estimator, which is commonly employed for these purposes, is extremely sensitive to outliers. We approach this problem in two ways in the paper. First, new robust spatio-temporal variogram estimators are introduced, which are defined as M-estimators of an original data transformation. Second, we compare the classical estimate against a robust one, identifying spatio-temporal outliers in this way. To accomplish this, we use a multivariate scale-contaminated normal model to produce reliable approximations for the sample distribution of these new estimators. In addition, we define and study a new class of M-estimators in this paper, including real-world applications, in order to determine whether there are any significant differences in the spatio-temporal variogram between two temporal lags and, if so, whether we can reduce the number of lags considered in the spatio-temporal analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] CUPID: An efficient spatio-temporal data engine
    Wu, Hang
    Wang, Bo
    Zhang, Ming
    Li, Guanyao
    Li, Ruiyuan
    Liu, Yang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 161 : 531 - 544
  • [42] Spatio-temporal autocorrelation of road network data
    Tao Cheng
    James Haworth
    Jiaqiu Wang
    Journal of Geographical Systems, 2012, 14 : 389 - 413
  • [43] Spatio-Temporal Scale Selection in Video Data
    Tony Lindeberg
    Journal of Mathematical Imaging and Vision, 2018, 60 : 525 - 562
  • [44] Spatio-temporal modeling of residential sales data
    Gelfand, AE
    Ghosh, SK
    Knight, JR
    Sirmans, CF
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1998, 16 (03) : 312 - 321
  • [45] Data analysis and processing for spatio-temporal forecasting
    Lee, Hyoungwoo
    Choo, Jaegul
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 737 - 739
  • [46] Outlier highlighting for spatio-temporal data visualization
    Pyysalo, Ulla
    Oksanen, Juha
    CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2013, 40 (03) : 165 - 171
  • [47] plotKML: Scientific Visualization of Spatio-Temporal Data
    Hengl, Tomislav
    Roudier, Pierre
    Beaudette, Dylan
    Pebesma, Edzer
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 63 (05): : 1 - 25
  • [48] CurrentClean: Spatio-temporal Cleaning of Stale Data
    Milani, Mostafa
    Zheng, Zheng
    Chiang, Fei
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 172 - 183
  • [49] STIFF: A forecasting framework for spatio-temporal data
    Li, ZG
    Dunham, MH
    Xia, YQ
    MINING MULTIMEDIA AND COMPLEX DATA, 2003, 2797 : 183 - 198
  • [50] Managing Uncertainty in Spatial and Spatio-temporal Data
    Cheng, Reynold
    Emrich, Tobias
    Kriegel, Hans-Peter
    Mamoulis, Nikos
    Renz, Matthias
    Trajcevski, Goce
    Zuefle, Andreas
    2014 IEEE 30TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2014, : 1302 - 1305