On Robustness for Spatio-Temporal Data

被引:2
|
作者
Garcia-Perez, Alfonso [1 ]
机构
[1] Univ Nacl Educ Distancia UNED, Dept Estadist, IO & CN, Madrid 28040, Spain
关键词
robust statistics; spatio-temporal outliers; von Mises expansions; saddlepoint approximations; APPROXIMATIONS;
D O I
10.3390/math10101785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spatio-temporal variogram is an important factor in spatio-temporal prediction through kriging, especially in fields such as environmental sustainability or climate change, where spatio-temporal data analysis is based on this concept. However, the traditional spatio-temporal variogram estimator, which is commonly employed for these purposes, is extremely sensitive to outliers. We approach this problem in two ways in the paper. First, new robust spatio-temporal variogram estimators are introduced, which are defined as M-estimators of an original data transformation. Second, we compare the classical estimate against a robust one, identifying spatio-temporal outliers in this way. To accomplish this, we use a multivariate scale-contaminated normal model to produce reliable approximations for the sample distribution of these new estimators. In addition, we define and study a new class of M-estimators in this paper, including real-world applications, in order to determine whether there are any significant differences in the spatio-temporal variogram between two temporal lags and, if so, whether we can reduce the number of lags considered in the spatio-temporal analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Revisiting the robustness of spatio-temporal modeling in video quality assessment
    Yan, Jiebin
    Wu, Lei
    Jiang, Wenhui
    Liu, Chuanlin
    Shen, Fei
    DISPLAYS, 2024, 81
  • [32] A Data Cleaning Method on Massive Spatio-Temporal Data
    Ding, Weilong
    Cao, Yaqi
    ADVANCES IN SERVICES COMPUTING, 2016, 10065 : 173 - 182
  • [33] Spatio-temporal sensor data processing techniques
    Kim J.-J.
    Kim, Jeong-Joon (jjkim@kpu.ac.kr), 1600, Korea Information Processing Society (13): : 1259 - 1276
  • [34] Multiscale recurrence analysis of spatio-temporal data
    Riedl, M.
    Marwan, N.
    Kurths, J.
    CHAOS, 2015, 25 (12)
  • [35] Evaluation Procedures for Forecasting with Spatio-Temporal Data
    Oliveira, Mariana
    Torgo, Luis
    Costa, Vitor Santos
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 703 - 718
  • [36] In Situ Adaptive Spatio-Temporal Data Summarization
    Dutta, Soumya
    Tasnim, Humayra
    Turton, Terece L.
    Ahrens, James
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 315 - 321
  • [37] Dynamic spatio-temporal models for spatial data
    Hefley, Trevor J.
    Hooten, Mevin B.
    Hanks, Ephraim M.
    Russell, Robin E.
    Walsh, Daniel P.
    SPATIAL STATISTICS, 2017, 20 : 206 - 220
  • [38] Enabling Spatio-Temporal Search in Open Data
    Neumaier, Sebastian
    Polleres, Axel
    JOURNAL OF WEB SEMANTICS, 2019, 55 : 21 - 36
  • [39] Editorial: Spatio-temporal data models and languages
    Spaccapietra, S
    GEOINFORMATICA, 2001, 5 (01) : 5 - 9
  • [40] A Review of Maritime Spatio-temporal Data Analytics
    Newaliya, Nitin
    Singh, Yudhvir
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 219 - 226