Polarization-dependent optomechanics mediated by chiral microresonators

被引:71
|
作者
Donato, M. G. [1 ]
Hernandez, J. [2 ]
Mazzulla, A. [3 ]
Provenzano, C. [2 ]
Saija, R. [4 ]
Sayed, R. [1 ,4 ]
Vasi, S. [1 ,4 ]
Magazzu, A. [1 ,4 ]
Pagliusi, P. [2 ,3 ]
Bartolino, R. [2 ,3 ,5 ]
Gucciardi, P. G. [1 ]
Marago, O. M. [1 ]
Cipparrone, G. [2 ,3 ]
机构
[1] CNR IPCF, Ist Proc Chim Fis, I-98158 Messina, Italy
[2] Univ Calabria, Dept Phys, I-87036 Arcavacata Di Rende, CS, Italy
[3] CNR IPCF, UOS Cosenza, I-87036 Arcavacata Di Rende, CS, Italy
[4] Univ Messina, Dipartimento Fis & Sci Terra, I-98166 Messina, Italy
[5] Accademia Nazl Lincei, Ctr Interdisciplinare B Segre, I-00165 Rome, Italy
关键词
LASER-INDUCED ROTATION; ANGULAR-MOMENTUM; NONSPHERICAL PARTICLES; TORQUE; BEAM; MICROPARTICLES; MANIPULATION; CRYSTALS; DRIVEN; LIGHT;
D O I
10.1038/ncomms4656
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chirality is one of the most prominent and intriguing aspects of nature, from spiral galaxies down to aminoacids. Despite the wide range of living and non-living, natural and artificial chiral systems at different scales, the origin of chirality-induced phenomena is often puzzling. Here we assess the onset of chiral optomechanics, exploiting the control of the interaction between chiral entities. We perform an experimental and theoretical investigation of the simultaneous optical trapping and rotation of spherulite-like chiral microparticles. Due to their shell structure (Bragg dielectric resonator), the microparticles function as omnidirectional chiral mirrors yielding highly polarization-dependent optomechanical effects. The coupling of linear and angular momentum, mediated by the optical polarization and the microparticles chiral reflectance, allows for fine tuning of chirality-induced optical forces and torques. This offers tools for optomechanics, optical sorting and sensing and optofluidics.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Polarization-Dependent Birefringence in Lithium Aluminosilicate Glass
    Sigaev, V. N.
    Lipat'ev, A. S.
    Fedotov, S. S.
    Lotarev, S., V
    Naumov, A. S.
    Shevyakina, D. M.
    GLASS AND CERAMICS, 2022, 79 (1-2) : 45 - 47
  • [42] The statistics of polarization-dependent loss in a recirculating loop
    Vinegoni, C
    Karlsson, M
    Petersson, M
    Sunnerud, H
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2004, 22 (04) : 968 - 976
  • [43] Polarization-dependent bending sensor with temperature insensitivity
    Kwon, Oh-Jang
    Kim, Hyun-Joo
    Kim, Jeehyun
    Rho, Byung Sup
    Kim, Chang-Seok
    Jeong, Myung Yong
    Han, Young-Geun
    22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3, 2012, 8421
  • [44] Polarization-Dependent Birefringence in Sodium Aluminoborate Glasses
    S. S. Fedotov
    A. S. Lipat’ev
    T. O. Lipat’eva
    S. V. Lotarev
    N. K. Prikhach
    V. N. Sigaev
    Glass and Ceramics, 2022, 79 : 85 - 87
  • [45] Polarization-dependent optical engineering of ferroelectric domains
    Shan Liu
    Yan Sheng
    Wieslaw Krolikowski
    ChemPhysMater, 2023, (04) : 346 - 350
  • [46] Polarization-Dependent Optical Binding of Plasmonic Nanoparticles
    Han, Fei
    Nan, Fan
    Yan, Zijie
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [47] Integrated polarization-dependent sensor for autonomous navigation
    Liu, Ze
    Zhang, Ran
    Wang, Zhiwen
    Guan, Le
    Li, Bin
    Chu, Jinkui
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2015, 14 (01):
  • [48] Polarization-dependent laser resonance ionization of beryllium
    Li, Ruohong
    Mostamand, Maryam
    Romans, Jekabs
    Lassen, Jens
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2020, 174
  • [49] MECHANISMS OF POLARIZATION-DEPENDENT THERMAL-CONDUCTIVITY
    THOMSON, JJ
    MAX, CE
    PEARLMAN, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (09): : 1047 - 1047
  • [50] Polarization-Dependent Transmission through Microwave Metamaterials
    Vedral, James L.
    Lee, David A.
    Musselman, Randall L.
    Pinchuk, Anatoliy O.
    METAMATERIALS X, 2015, 9502