Polarization-dependent optomechanics mediated by chiral microresonators

被引:71
|
作者
Donato, M. G. [1 ]
Hernandez, J. [2 ]
Mazzulla, A. [3 ]
Provenzano, C. [2 ]
Saija, R. [4 ]
Sayed, R. [1 ,4 ]
Vasi, S. [1 ,4 ]
Magazzu, A. [1 ,4 ]
Pagliusi, P. [2 ,3 ]
Bartolino, R. [2 ,3 ,5 ]
Gucciardi, P. G. [1 ]
Marago, O. M. [1 ]
Cipparrone, G. [2 ,3 ]
机构
[1] CNR IPCF, Ist Proc Chim Fis, I-98158 Messina, Italy
[2] Univ Calabria, Dept Phys, I-87036 Arcavacata Di Rende, CS, Italy
[3] CNR IPCF, UOS Cosenza, I-87036 Arcavacata Di Rende, CS, Italy
[4] Univ Messina, Dipartimento Fis & Sci Terra, I-98166 Messina, Italy
[5] Accademia Nazl Lincei, Ctr Interdisciplinare B Segre, I-00165 Rome, Italy
关键词
LASER-INDUCED ROTATION; ANGULAR-MOMENTUM; NONSPHERICAL PARTICLES; TORQUE; BEAM; MICROPARTICLES; MANIPULATION; CRYSTALS; DRIVEN; LIGHT;
D O I
10.1038/ncomms4656
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chirality is one of the most prominent and intriguing aspects of nature, from spiral galaxies down to aminoacids. Despite the wide range of living and non-living, natural and artificial chiral systems at different scales, the origin of chirality-induced phenomena is often puzzling. Here we assess the onset of chiral optomechanics, exploiting the control of the interaction between chiral entities. We perform an experimental and theoretical investigation of the simultaneous optical trapping and rotation of spherulite-like chiral microparticles. Due to their shell structure (Bragg dielectric resonator), the microparticles function as omnidirectional chiral mirrors yielding highly polarization-dependent optomechanical effects. The coupling of linear and angular momentum, mediated by the optical polarization and the microparticles chiral reflectance, allows for fine tuning of chirality-induced optical forces and torques. This offers tools for optomechanics, optical sorting and sensing and optofluidics.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Effect of Polarization-Dependent Loss on Polarization Slew Rate
    Jopson, R. M.
    Burrows, E. C., III
    23RD OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC2018), 2018,
  • [22] Chiral splitting and polarization-dependent optical absorption of exciton for Rashba spin-orbit interaction
    Liu, Yu
    Chen, Yonghai
    Wang, Zhanguo
    PHYSICS LETTERS A, 2011, 375 (33) : 3025 - 3031
  • [23] Taming Brillouin Optomechanics Using Supermode Microresonators
    Wang, Min
    Hu, Zhi-Gang
    Lao, Chenghao
    Wang, Yuanlei
    Jin, Xing
    Zhou, Xin
    Lei, Yuechen
    Wang, Ze
    Liu, Wenjing
    Yang, Qi-Fan
    Li, Bei-Bei
    PHYSICAL REVIEW X, 2024, 14 (01)
  • [24] SIMPLE POLARIZATION-DEPENDENT LOSS MEASUREMENT BASED ON POLARIZATION SCRAMBLING
    Koch, B.
    Noe, R.
    Mirvoda, V.
    Sandel, D.
    Panhwar, M. F.
    2014 OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE AND AUSTRALIAN CONFERENCE ON OPTICAL FIBRE TECHNOLOGY (OECC/ACOFT 2014), 2014, : 181 - 183
  • [25] A Cryogenic Cavity Optomechanics System for Membrane Microresonators
    Purdy, Thomas
    Peterson, Robert
    Yu, Pen-Li
    Regal, Cindy
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [26] Polarization-dependent femtosecond laser filamentation in air
    朱忠彬
    王铁军
    刘尧香
    陈娜
    张惠芳
    孙海轶
    郭豪
    张健浩
    张旋
    李庚禹
    刘灿东
    曾志男
    刘建胜
    陈瑞良
    李儒新
    徐至展
    ChineseOpticsLetters, 2018, 16 (07) : 86 - 91
  • [27] POLARIZATION-DEPENDENT PHOTOYIELD FOR EVAPORATED NA FILMS
    COLTER, PC
    SCHNATTERLY, SE
    PHYSICAL REVIEW B, 1980, 22 (04): : 1781 - 1783
  • [28] Autocorrelation of the polarization-dependent loss in fiber routes
    Antonelli, C.
    Mecozzi, A.
    Nelson, L. E.
    Magill, P.
    OPTICS LETTERS, 2011, 36 (20) : 4005 - 4007
  • [29] Polarization-dependent vibrational shifts on dielectric substrates
    Yang, C.
    Wang, W.
    Nefedov, A.
    Wang, Y.
    Mayerhoefer, T. G.
    Woell, C.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (30) : 17129 - 17133
  • [30] Polarization-dependent optical absorption in phosphorene flakes
    Wieloszynska, A.
    Jakobczyk, P.
    Bogdanowicz, R.
    LOW-DIMENSIONAL MATERIALS AND DEVICES 2019, 2019, 11085