Integrating Question Answering and Text-to-SQL in Portuguese

被引:2
|
作者
Jose, Marcos Menon [1 ]
Jose, Marcelo Archanjo [2 ]
Maua, Denis Deratani [3 ]
Cozman, Fabio Gagliardi [1 ]
机构
[1] Univ Sao Paulo, Escola Politecn, Sao Paulo, Brazil
[2] Ctr Artificial Intelligence C4AI, Sao Paulo, Brazil
[3] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Question answering; Transformers networks; Natural language processing in portuguese; Natural language interfaces to databases;
D O I
10.1007/978-3-030-98305-5_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning transformers have drastically improved systems that automatically answer questions in natural language. However, different questions demand different answering techniques; here we propose, build and validate an architecture that integrates different modules to answer two distinct kinds of queries. Our architecture takes a free-form natural language text and classifies it to send it either to a Neural Question Answering Reasoner or a Natural Language parser to SQL. We implemented a complete system for the Portuguese language, using some of the main tools available for the language and translating training and testing datasets. Experiments show that our system selects the appropriate answering method with high accuracy (over 99%), thus validating a modular question answering strategy.
引用
收藏
页码:278 / 287
页数:10
相关论文
共 50 条
  • [31] Bridging the gap between text-to-SQL research and real-world applications: A unified all-in-one framework for text-to-SQL
    Han, Mirae
    Park, Seongsik
    Kim, Harksoo
    Kim, Seulgi
    KNOWLEDGE-BASED SYSTEMS, 2024, 306
  • [32] Selective Demonstrations for Cross-domain Text-to-SQL
    Chang, Shuaichen
    Fosler-Lussier, Eric
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 14174 - 14189
  • [33] Small, Medium, and Large Language Models for Text-to-SQL
    Oliveira, Aiko
    Nascimento, Eduardo
    Pinheiro, Joao
    Avila, Caio Viktor S.
    Coelho, Gustavo
    Feijo, Lucas
    Izquierdo, Yenier
    Garcia, Grettel
    Paes Leme, Luiz Andre P.
    Lemos, Melissa
    Casanova, Marco A.
    CONCEPTUAL MODELING, ER 2024, 2025, 15238 : 276 - 294
  • [34] Semantic Evaluation for Text-to-SQL with Distilled Test Suites
    Zhong, Ruiqi
    Yu, Tao
    Klein, Dan
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 396 - 411
  • [35] A Pilot Study of Text-to-SQL Semantic Parsing for Vietnamese
    Anh Tuan Nguyen
    Mai Hoang Dao
    Dat Quoc Nguyen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 4079 - 4085
  • [36] Generate Text-to-SQL Queries Based on Sketch Filling
    Fu, Yinpei
    Ye, Songtao
    Fan, Hongjie
    IEEE ACCESS, 2024, 12 : 152392 - 152403
  • [37] Enhancing Text-to-SQL Translation for Financial System Design
    Song, Yewei
    Ezzini, Saad
    Tang, Xunzhu
    Lothritz, Cedric
    Klein, Jacques
    Bissyande, Tegawende
    Boytsov, Andrey
    Ble, Ulrick
    Goujon, Anne
    2024 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING IN PRACTICE, ICSE-SEIP 2024, 2024, : 252 - 262
  • [38] Data-Anonymous Encoding for Text-to-SQL Generation
    Dong, Zhen
    Sun, Shizhao
    Liu, Hongzhi
    Lou, Jian-Guang
    Zhang, Dongmei
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 5405 - 5414
  • [39] Benchmarking and Improving Text-to-SQL Generation under Ambiguity
    Bhaskar, Adithya
    Tomar, Tushar
    Sathe, Ashutosh
    Sarawagi, Sunita
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 7053 - 7074
  • [40] Re-appraising the Schema Linking for Text-to-SQL
    Gan, Yujian
    Chen, Xinyun
    Purver, Matthew
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 835 - 852