Integrating Question Answering and Text-to-SQL in Portuguese

被引:2
|
作者
Jose, Marcos Menon [1 ]
Jose, Marcelo Archanjo [2 ]
Maua, Denis Deratani [3 ]
Cozman, Fabio Gagliardi [1 ]
机构
[1] Univ Sao Paulo, Escola Politecn, Sao Paulo, Brazil
[2] Ctr Artificial Intelligence C4AI, Sao Paulo, Brazil
[3] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Question answering; Transformers networks; Natural language processing in portuguese; Natural language interfaces to databases;
D O I
10.1007/978-3-030-98305-5_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning transformers have drastically improved systems that automatically answer questions in natural language. However, different questions demand different answering techniques; here we propose, build and validate an architecture that integrates different modules to answer two distinct kinds of queries. Our architecture takes a free-form natural language text and classifies it to send it either to a Neural Question Answering Reasoner or a Natural Language parser to SQL. We implemented a complete system for the Portuguese language, using some of the main tools available for the language and translating training and testing datasets. Experiments show that our system selects the appropriate answering method with high accuracy (over 99%), thus validating a modular question answering strategy.
引用
收藏
页码:278 / 287
页数:10
相关论文
共 50 条
  • [21] S2SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder for Text-to-SQL Parsers
    Hui, Binyuan
    Geng, Ruiying
    Wang, Lihan
    Qin, Bowen
    Li, Yanyang
    Li, Bowen
    Sun, Jian
    Li, Yongbin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 1254 - 1262
  • [22] Error Detection for Text-to-SQL Semantic Parsing
    Chen, Shijie
    Chen, Ziru
    Sun, Huan
    Su, Yu
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 11730 - 11743
  • [23] An Exploratory Study on Model Compression for Text-to-SQL
    Sun, Shuo
    Gao, Yuze
    Zhang, Yuchen
    Su, Jian
    Bin Chen
    Lin, Yingzhan
    Sun, Shuqi
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 11647 - 11654
  • [24] Structure-Grounded Pretraining for Text-to-SQL
    Deng, Xiang
    Awadallah, Ahmed Hassan
    Meek, Christopher
    Polozov, Oleksandr
    Sun, Huan
    Richardson, Matthew
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 1337 - 1350
  • [25] An In-Depth Benchmarking of Text-to-SQL Systems
    Gkini, Orest
    Belmpas, Theofilos
    Koutrika, Georgia
    Ioannidis, Yannis
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 632 - 644
  • [26] A survey on deep learning approaches for text-to-SQL
    George Katsogiannis-Meimarakis
    Georgia Koutrika
    The VLDB Journal, 2023, 32 : 905 - 936
  • [27] Towards Text-to-SQL over Aggregate Tables
    Shuqin Li
    Kaibin Zhou
    Zeyang Zhuang
    Haofen Wang
    Jun Ma
    Data Intelligence, 2023, 5 (02) : 457 - 474
  • [28] Ar-Spider: Text-to-SQL in Arabic
    Almohaimeed, Saleh
    Almohaimeed, Saad
    Al Ghanim, Mansour
    Wang, Liqiang
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 1024 - 1030
  • [29] RGISQL: Integrating Refined Grammatical Information into Relational Graph Neural Network for Text-to-SQL Task
    Li, Shuiyan
    He, Yaozhen
    Ao, Longhao
    Qi, Rongzhi
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [30] IdSay: Question Answering for Portuguese
    Carvalho, Gracinda
    de Matos, David Martins
    Rocio, Vitor
    EVALUATING SYSTEMS FOR MULTILINGUAL AND MULTIMODAL INFORMATION ACCESS, 2009, 5706 : 345 - +