Integrating Question Answering and Text-to-SQL in Portuguese

被引:2
|
作者
Jose, Marcos Menon [1 ]
Jose, Marcelo Archanjo [2 ]
Maua, Denis Deratani [3 ]
Cozman, Fabio Gagliardi [1 ]
机构
[1] Univ Sao Paulo, Escola Politecn, Sao Paulo, Brazil
[2] Ctr Artificial Intelligence C4AI, Sao Paulo, Brazil
[3] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Question answering; Transformers networks; Natural language processing in portuguese; Natural language interfaces to databases;
D O I
10.1007/978-3-030-98305-5_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning transformers have drastically improved systems that automatically answer questions in natural language. However, different questions demand different answering techniques; here we propose, build and validate an architecture that integrates different modules to answer two distinct kinds of queries. Our architecture takes a free-form natural language text and classifies it to send it either to a Neural Question Answering Reasoner or a Natural Language parser to SQL. We implemented a complete system for the Portuguese language, using some of the main tools available for the language and translating training and testing datasets. Experiments show that our system selects the appropriate answering method with high accuracy (over 99%), thus validating a modular question answering strategy.
引用
收藏
页码:278 / 287
页数:10
相关论文
共 50 条
  • [1] Text-to-SQL Generation for Question Answering on Electronic Medical Records
    Wang, Ping
    Shi, Tian
    Reddy, Chandan K.
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 350 - 361
  • [2] Semantic Decomposition of Question and SQL for Text-to-SQL Parsing
    Eyal, Ben
    Bachar, Amir
    Haroche, Ophir
    Mahabi, Moran
    Elhadad, Michael
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 13629 - 13645
  • [3] SEOSS-Queries - a software engineering dataset for text-to-SQL and question answering tasks
    Tomova, Mihaela Todorova
    Hofmann, Martin
    Maeder, Patrick
    DATA IN BRIEF, 2022, 42
  • [4] Thai Question Text-To-SQL Parsing Using Transformer
    Tungruethaipak, Natthawat
    Prom-on, Santitham
    2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, : 631 - 637
  • [5] On the Vulnerabilities of Text-to-SQL Models
    Peng, Xutan
    Zhang, Yipeng
    Yang, Jingfeng
    Stevenson, Mark
    2023 IEEE 34TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, ISSRE, 2023, : 1 - 12
  • [6] Data Augmentation with Hierarchical SQL-to-Question Generation for Cross-domain Text-to-SQL Parsing
    Wu, Kun
    Wang, Lijie
    Li, Zhenghua
    Zhang, Ao
    Xiao, Xinyan
    Wu, Hua
    Zhang, Min
    Wang, Haifeng
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 8974 - 8983
  • [7] Decoupling SQL query hardness parsing for text-to-SQL
    Yi, Jiawen
    Chen, Guo
    Zhou, Xiaojun
    Neurocomputing, 621
  • [8] Decoupling SQL query hardness parsing for text-to-SQL
    Yi, Jiawen
    Chen, Guo
    Zhou, Xiaojun
    NEUROCOMPUTING, 2025, 621
  • [9] Improving Text-to-SQL Evaluation Methodology
    Finegan-Dollak, Catherine
    Kummerfeld, Jonathan K.
    Zhang, Li
    Ramanathan, Karthik
    Sadasivam, Sesh
    Zhang, Rui
    Radev, Dragomir
    PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, 2018, : 351 - 360
  • [10] Exploring Schema Generalizability of Text-to-SQL
    Li, Jieyu
    Chen, Lu
    Cao, Ruisheng
    Zhu, Su
    Xu, Hongshen
    Chen, Zhi
    Zhang, Hanchong
    Yu, Kai
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 1344 - 1360