Weakening of the stratospheric polar vortex by Arctic sea-ice loss

被引:605
|
作者
Kim, Baek-Min [1 ]
Son, Seok-Woo [2 ]
Min, Seung-Ki [3 ]
Jeong, Jee-Hoon [4 ]
Kim, Seong-Joong [1 ]
Zhang, Xiangdong [5 ,6 ]
Shim, Taehyoun [4 ]
Yoon, Jin-Ho [7 ]
机构
[1] Korea Polar Res Inst, Div Polar Climate Change Res, Inchon 406840, South Korea
[2] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea
[3] Pohang Univ Sci & Technol, Sch Environm Sci & Engn, Pohang 790784, South Korea
[4] Chonnam Natl Univ, Dept Oceanog, Kwangju 500757, South Korea
[5] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA
[6] Univ Alaska, Dept Atmospher Sci, Fairbanks, AK 99775 USA
[7] Pacific NW Natl Lab, Richland, WA 99352 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
美国国家科学基金会;
关键词
ATMOSPHERIC RESPONSE; MODEL; VARIABILITY; EVENTS; IMPACT; LINK;
D O I
10.1038/ncomms5646
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea-ice, the mechanism that links sea-ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea-ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea-ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhances the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January-February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] The Arctic sea-ice navigability index
    Gupta, Mukesh
    CURRENT SCIENCE, 2021, 121 (04): : 567 - 570
  • [42] ARCTIC SEA-ICE EXTENT AND THICKNESS
    WADHAMS, P
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1995, 352 (1699): : 301 - 319
  • [43] REVERBERATION UNDER ARCTIC SEA-ICE
    BROWN, JR
    BROWN, DW
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1966, 40 (02): : 399 - &
  • [44] Arctic sea-ice variability revisited
    Stroeve, Julienne
    Frei, Allan
    McCreight, James
    Ghatak, Debjani
    ANNALS OF GLACIOLOGY, VOL 48, 2008, 48 : 71 - 81
  • [45] Consequences of Weakening the Dynamic Barrier of the Arctic Polar Vortex
    V. V. Zuev
    E. S. Savelieva
    E. A. Maslennikova
    A. S. Tomashova
    V. N. Krupchatnikov
    O. G. Chkhetiani
    M. V. Kalashnik
    Doklady Earth Sciences, 2024, 514 : 401 - 409
  • [46] Consequences of Weakening the Dynamic Barrier of the Arctic Polar Vortex
    Zuev, V. V.
    Savelieva, E. S.
    Maslennikova, E. A.
    Tomashova, A. S.
    Krupchatnikov, V. N.
    Chkhetiani, O. G.
    Kalashnik, M. V.
    DOKLADY EARTH SCIENCES, 2024, 514 (02) : 401 - 409
  • [47] Loss of sea-ice algae
    Graham Simpkins
    Nature Climate Change, 2018, 8 : 854 - 854
  • [48] Loss of sea-ice algae
    Simpkins, Graham
    NATURE CLIMATE CHANGE, 2018, 8 (10) : 854 - 854
  • [49] Influence of the Arctic Sea-Ice Regime Shift on Sea-Ice Methylated Mercury Trends
    Schartup, Amina T.
    Soerensen, Anne L.
    Heimburger-Boavida, Lars-Eric
    ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2020, 7 (10) : 708 - 713
  • [50] Effects of sea-ice loss
    Eithne Tynan
    Nature Climate Change, 2015, 5 (7) : 621 - 621