Weakening of the stratospheric polar vortex by Arctic sea-ice loss

被引:605
|
作者
Kim, Baek-Min [1 ]
Son, Seok-Woo [2 ]
Min, Seung-Ki [3 ]
Jeong, Jee-Hoon [4 ]
Kim, Seong-Joong [1 ]
Zhang, Xiangdong [5 ,6 ]
Shim, Taehyoun [4 ]
Yoon, Jin-Ho [7 ]
机构
[1] Korea Polar Res Inst, Div Polar Climate Change Res, Inchon 406840, South Korea
[2] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea
[3] Pohang Univ Sci & Technol, Sch Environm Sci & Engn, Pohang 790784, South Korea
[4] Chonnam Natl Univ, Dept Oceanog, Kwangju 500757, South Korea
[5] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA
[6] Univ Alaska, Dept Atmospher Sci, Fairbanks, AK 99775 USA
[7] Pacific NW Natl Lab, Richland, WA 99352 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
美国国家科学基金会;
关键词
ATMOSPHERIC RESPONSE; MODEL; VARIABILITY; EVENTS; IMPACT; LINK;
D O I
10.1038/ncomms5646
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea-ice, the mechanism that links sea-ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea-ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea-ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhances the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January-February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Influence of Arctic sea-ice loss on the Greenland ice sheet climate
    Raymond Sellevold
    Jan T. M. Lenaerts
    Miren Vizcaino
    Climate Dynamics, 2022, 58 : 179 - 193
  • [22] Influence of Arctic sea-ice loss on the Greenland ice sheet climate
    Sellevold, Raymond
    Lenaerts, Jan T. M.
    Vizcaino, Miren
    CLIMATE DYNAMICS, 2022, 58 (1-2) : 179 - 193
  • [23] Ural Blocking Driving Extreme Arctic Sea Ice Loss, Cold Eurasia, and Stratospheric Vortex Weakening in Autumn and Early Winter 2016-2017
    Tyrlis, Evangelos
    Manzini, Elisa
    Bader, Juergen
    Ukita, Jinro
    Nakamura, Hisashi
    Matei, Daniela
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (21) : 11313 - 11329
  • [24] The Response of Surface Temperature Persistence to Arctic Sea-Ice Loss
    Lewis, Neil T.
    Seviour, William J. M.
    Roberts-Straw, Hannah E.
    Screen, James A.
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (02)
  • [25] Arctic sea-ice loss fuels extreme European snowfall
    Hannah Bailey
    Alun Hubbard
    Eric S. Klein
    Kaisa-Riikka Mustonen
    Pete D. Akers
    Hannu Marttila
    Jeffrey M. Welker
    Nature Geoscience, 2021, 14 : 283 - 288
  • [26] Arctic sea-ice loss fuels extreme European snowfall
    Bailey, Hannah
    Hubbard, Alun
    Klein, Eric S.
    Mustonen, Kaisa-Riikka
    Akers, Pete D.
    Marttila, Hannu
    Welker, Jeffrey M.
    NATURE GEOSCIENCE, 2021, 14 (05) : 283 - +
  • [27] Variations in the age of Arctic sea-ice and summer sea-ice extent
    Rigor, IG
    Wallace, JM
    GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (09) : L094011 - 4
  • [28] The Impact of Sea-Ice Loss on Arctic Climate Feedbacks and Their Role for Arctic Amplification
    Jenkins, Matthew
    Dai, Aiguo
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (15)
  • [29] Features of Stratospheric Polar Vortex Weakening Prior to Breakdown
    V. V. Zuev
    E. S. Savelieva
    A. V. Pavlinsky
    Atmospheric and Oceanic Optics, 2022, 35 : 183 - 186
  • [30] Features of Stratospheric Polar Vortex Weakening Prior to Breakdown
    Zuev, V. V.
    Savelieva, E. S.
    Pavlinsky, A. V.
    ATMOSPHERIC AND OCEANIC OPTICS, 2022, 35 (02) : 183 - 186