Complexity of Proximal Augmented Lagrangian for Nonconvex Optimization with Nonlinear Equality Constraints

被引:13
|
作者
Xie, Yue [1 ]
Wright, Stephen J. [2 ]
机构
[1] Univ Wisconsin, Wisconsin Inst Discovery, 330 N Orchard St, Madison, WI 53715 USA
[2] Univ Wisconsin, Comp Sci Dept, 1210 W Dayton St, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Optimization with nonlinear equality constraints; Nonconvex optimization; Proximal augmented Lagrangian; Complexity analysis; Newton-conjugate-gradient; QUALIFICATION; OPTIMALITY;
D O I
10.1007/s10915-021-01409-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL) framework for nonconvex optimization with nonlinear equality constraints. When an approximate first-order (second-order) optimal point is obtained in the subproblem, an epsilon first-order (second-order) optimal point for the original problem can be guaranteed within O(1/epsilon(2-eta)) outer iterations (where eta is a user-defined parameter with eta is an element of[0,2] for the first-order result and eta is an element of[1,2] for the second-order result) when the proximal term coefficient beta and penalty parameter rho satisfy beta=O(epsilon(eta)) and rho=Omega(1/epsilon(eta)), respectively. We also investigate the total iteration complexity and operation complexity when a Newton-conjugate-gradient algorithm is used to solve the subproblems.Finally, we discuss an adaptive scheme for determining a value of the parameter rho that satisfies the requirements of the analysis.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Application of an augmented Lagrangian approach to multibody systems with equality motion constraints
    N. Potosakis
    E. Paraskevopoulos
    S. Natsiavas
    Nonlinear Dynamics, 2020, 99 : 753 - 776
  • [42] Application of an augmented Lagrangian approach to multibody systems with equality motion constraints
    Potosakis, N.
    Paraskevopoulos, E.
    Natsiavas, S.
    NONLINEAR DYNAMICS, 2020, 99 (01) : 753 - 776
  • [43] Global convergence of dislocation hyperbolic augmented Lagrangian algorithm for nonconvex optimization
    Ramirez, Lennin Mallma
    Maculan, Nelson
    Xavier, Adilson Elias
    Xavier, Vinicius Layter
    OPTIMIZATION, 2024,
  • [44] A geometric framework for nonconvex optimization duality using augmented lagrangian functions
    Angelia Nedich
    Asuman Ozdaglar
    Journal of Global Optimization, 2008, 40 : 545 - 573
  • [45] Stochastic inexact augmented Lagrangian method for nonconvex expectation constrained optimization
    Li, Zichong
    Chen, Pin-Yu
    Liu, Sijia
    Lu, Songtao
    Xu, Yangyang
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (01) : 117 - 147
  • [46] A geometric framework for nonconvex optimization duality using augmented lagrangian functions
    Nedich, Angelia
    Ozdaglar, Asuman
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (04) : 545 - 573
  • [47] An augmented Lagrangian trust region method for equality constrained optimization
    Wang, Xiao
    Yuan, Yaxiang
    OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (03): : 559 - 582
  • [48] Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization
    J. Sun
    L. W. Zhang
    Y. Wu
    Journal of Optimization Theory and Applications, 2006, 129 : 437 - 456
  • [49] Properties of the augmented Lagrangian in nonlinear semidefinite optimization
    Sun, J.
    Zhang, L. W.
    Wu, Y.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 129 (03) : 437 - 456
  • [50] A neurodynamic optimization approach to distributed nonconvex optimization based on an HP augmented Lagrangian function
    Guan, Huimin
    Liu, Yang
    Kou, Kit Ian
    Gui, Weihua
    NEURAL NETWORKS, 2025, 181