Complexity of Proximal Augmented Lagrangian for Nonconvex Optimization with Nonlinear Equality Constraints

被引:13
|
作者
Xie, Yue [1 ]
Wright, Stephen J. [2 ]
机构
[1] Univ Wisconsin, Wisconsin Inst Discovery, 330 N Orchard St, Madison, WI 53715 USA
[2] Univ Wisconsin, Comp Sci Dept, 1210 W Dayton St, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Optimization with nonlinear equality constraints; Nonconvex optimization; Proximal augmented Lagrangian; Complexity analysis; Newton-conjugate-gradient; QUALIFICATION; OPTIMALITY;
D O I
10.1007/s10915-021-01409-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL) framework for nonconvex optimization with nonlinear equality constraints. When an approximate first-order (second-order) optimal point is obtained in the subproblem, an epsilon first-order (second-order) optimal point for the original problem can be guaranteed within O(1/epsilon(2-eta)) outer iterations (where eta is a user-defined parameter with eta is an element of[0,2] for the first-order result and eta is an element of[1,2] for the second-order result) when the proximal term coefficient beta and penalty parameter rho satisfy beta=O(epsilon(eta)) and rho=Omega(1/epsilon(eta)), respectively. We also investigate the total iteration complexity and operation complexity when a Newton-conjugate-gradient algorithm is used to solve the subproblems.Finally, we discuss an adaptive scheme for determining a value of the parameter rho that satisfies the requirements of the analysis.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Nonlinear Lagrangian Theory for Nonconvex Optimization
    C. J. Goh
    X. Q. Yang
    Journal of Optimization Theory and Applications, 2001, 109 : 99 - 121
  • [22] Nonlinear Lagrangian theory for nonconvex optimization
    Goh, CJ
    Yang, XQ
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (01) : 99 - 121
  • [23] QPALM: a proximal augmented lagrangian method for nonconvex quadratic programs
    Ben Hermans
    Andreas Themelis
    Panagiotis Patrinos
    Mathematical Programming Computation, 2022, 14 : 497 - 541
  • [24] QPALM: a proximal augmented lagrangian method for nonconvex quadratic programs
    Hermans, Ben
    Themelis, Andreas
    Patrinos, Panagiotis
    MATHEMATICAL PROGRAMMING COMPUTATION, 2022, 14 (03) : 497 - 541
  • [25] Complexity of linearized quadratic penalty for optimization with nonlinear equality constraints
    El Bourkhissi, Lahcen
    Necoara, Ion
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (03) : 483 - 510
  • [26] An Adaptive Superfast Inexact Proximal Augmented Lagrangian Method for Smooth Nonconvex Composite Optimization Problems
    Arnesh Sujanani
    Renato D. C. Monteiro
    Journal of Scientific Computing, 2023, 97
  • [27] An Adaptive Superfast Inexact Proximal Augmented Lagrangian Method for Smooth Nonconvex Composite Optimization Problems
    Sujanani, Arnesh
    Monteiro, Renato D. C.
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (02)
  • [28] AN AUGMENTED LAGRANGIAN BASED ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION
    Houska, Boris
    Frasch, Janick
    Diehl, Moritz
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 1101 - 1127
  • [29] Dislocation hyperbolic augmented Lagrangian algorithm for nonconvex optimization
    Ramirez, Lennin Mallma
    Maculan, Nelson
    Xavier, Adilson Elias
    Xavier, Vinicius Layter
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (05) : 2941 - 2950
  • [30] On the Convergence of a Distributed Augmented Lagrangian Method for Nonconvex Optimization
    Chatzipanagiotis, Nikolaos
    Zavlanos, Michael M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (09) : 4405 - 4420