Complexity of Proximal Augmented Lagrangian for Nonconvex Optimization with Nonlinear Equality Constraints

被引:13
|
作者
Xie, Yue [1 ]
Wright, Stephen J. [2 ]
机构
[1] Univ Wisconsin, Wisconsin Inst Discovery, 330 N Orchard St, Madison, WI 53715 USA
[2] Univ Wisconsin, Comp Sci Dept, 1210 W Dayton St, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Optimization with nonlinear equality constraints; Nonconvex optimization; Proximal augmented Lagrangian; Complexity analysis; Newton-conjugate-gradient; QUALIFICATION; OPTIMALITY;
D O I
10.1007/s10915-021-01409-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL) framework for nonconvex optimization with nonlinear equality constraints. When an approximate first-order (second-order) optimal point is obtained in the subproblem, an epsilon first-order (second-order) optimal point for the original problem can be guaranteed within O(1/epsilon(2-eta)) outer iterations (where eta is a user-defined parameter with eta is an element of[0,2] for the first-order result and eta is an element of[1,2] for the second-order result) when the proximal term coefficient beta and penalty parameter rho satisfy beta=O(epsilon(eta)) and rho=Omega(1/epsilon(eta)), respectively. We also investigate the total iteration complexity and operation complexity when a Newton-conjugate-gradient algorithm is used to solve the subproblems.Finally, we discuss an adaptive scheme for determining a value of the parameter rho that satisfies the requirements of the analysis.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Complexity of Proximal Augmented Lagrangian for Nonconvex Optimization with Nonlinear Equality Constraints
    Yue Xie
    Stephen J. Wright
    Journal of Scientific Computing, 2021, 86
  • [2] Iteration Complexity of a Proximal Augmented Lagrangian Method for Solving Nonconvex Composite Optimization Problems with Nonlinear Convex Constraints
    Kong, Weiwei
    Melo, Jefferson G.
    Monteiro, Renato D. C.
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 48 (02) : 1066 - 1094
  • [3] An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints
    Sahin, Mehmet Fatih
    Eftekhari, Armin
    Alacaoglu, Ahmet
    Latorre, Fabian
    Cevher, Volkan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [4] An augmented Lagrangian method for nonconvex composite optimization problems with nonlinear constraints
    Papadimitriou, Dimitri
    Vu, Bang Cong
    OPTIMIZATION AND ENGINEERING, 2024, 25 (04) : 1921 - 1990
  • [5] NONLINEAR AUGMENTED LAGRANGIAN FOR NONCONVEX MULTIOBJECTIVE OPTIMIZATION
    Chen, Chunrong
    Cheng, Tai Chiu Edwin
    Li, Shengjie
    Yang, Xiaoqi
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (01) : 157 - 174
  • [6] On the complexity of an augmented Lagrangian method for nonconvex optimization IMA
    Grapiglia, Geovani Nunes
    Yuan, Ya-xiang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) : 1546 - 1568
  • [7] New Augmented Lagrangian-Based Proximal Point Algorithm for Convex Optimization with Equality Constraints
    Yuan Shen
    Hongyong Wang
    Journal of Optimization Theory and Applications, 2016, 171 : 251 - 261
  • [8] New Augmented Lagrangian-Based Proximal Point Algorithm for Convex Optimization with Equality Constraints
    Shen, Yuan
    Wang, Hongyong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (01) : 251 - 261
  • [9] A UNIFIED NONLINEAR AUGMENTED LAGRANGIAN APPROACH FOR NONCONVEX VECTOR OPTIMIZATION
    Chen, Chunrong
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2011, 1 (03): : 495 - 508
  • [10] Moreau Envelope Augmented Lagrangian Method for Nonconvex Optimization with Linear Constraints
    Jinshan Zeng
    Wotao Yin
    Ding-Xuan Zhou
    Journal of Scientific Computing, 2022, 91