Complexity of mixed Gaussian states from Fisher information geometry

被引:27
|
作者
Di Giulio, Giuseppe [1 ,2 ]
Tonni, Erik [1 ,2 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] INFN, Sez Trieste, Via Bonomea 265, I-34136 Trieste, Italy
关键词
AdS-CFT Correspondence; Black Holes; Lattice Quantum Field Theory; DENSITY-MATRIX; QUANTUM; ENTANGLEMENT; DISTANCE; DISTRIBUTIONS; CHAIN;
D O I
10.1007/JHEP12(2020)101
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the circuit complexity for mixed bosonic Gaussian states in harmonic lattices in any number of dimensions. By employing the Fisher information geometry for the covariance matrices, we consider the optimal circuit connecting two states with vanishing first moments, whose length is identified with the complexity to create a target state from a reference state through the optimal circuit. Explicit proposals to quantify the spectrum complexity and the basis complexity are discussed. The purification of the mixed states is also analysed. In the special case of harmonic chains on the circle or on the infinite line, we report numerical results for thermal states and reduced density matrices.
引用
收藏
页数:105
相关论文
共 50 条
  • [41] Krylov Complexity of Fermionic and Bosonic Gaussian States
    Adhikari, Kiran
    Rijal, Adwait
    Aryal, Ashok Kumar
    Ghimire, Mausam
    Singh, Rajeev
    Deppe, Christian
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2024, 72 (05):
  • [42] Geometry of perturbed Gaussian states and quantum estimation
    Genoni, Marco G.
    Giorda, Paolo
    Paris, Matteo G. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
  • [43] QUANTUM FISHER INFORMATION FOR SUPERPOSITIONS OF SPIN STATES
    Xiong, Heng-Na
    Ma, Jian
    Liu, Wan-Fang
    Wang, Xiaoguang
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (5-6) : 498 - 508
  • [44] Quantum Fisher information for states in exponential form
    Jiang, Zhang
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [45] Fisher's zeros of quasi-Gaussian densities of states
    Denbleyker, A.
    Du, D.
    Meurice, Y.
    Velytsky, A.
    PHYSICAL REVIEW D, 2007, 76 (11):
  • [46] Quantum fisher information for superpositions of spin states
    Xiong, Heng-Na
    Ma, Jian
    Liu, Wan-Fang
    Wang, Xiaoguang
    Quantum Information and Computation, 2010, 10 (5-6): : 498 - 508
  • [47] Quantum Fisher Information of Bipartitions of W States
    Ozaydin, F.
    Altintas, A. A.
    Yesilyurt, C.
    Bugu, S.
    Erol, V.
    ACTA PHYSICA POLONICA A, 2015, 127 (04) : 1233 - 1235
  • [48] Purification of Gaussian maximally mixed states
    Jeong, Kabgyun
    Lim, Youngrong
    PHYSICS LETTERS A, 2016, 380 (43) : 3607 - 3611
  • [49] Optimal cloning of mixed Gaussian states
    Guta, Madalin
    Matsumoto, Keiji
    PHYSICAL REVIEW A, 2006, 74 (03):
  • [50] Social choice, computational complexity, Gaussian geometry, and Boolean functions
    O'Donnell, Ryan
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 633 - 658