Complexity of mixed Gaussian states from Fisher information geometry

被引:27
|
作者
Di Giulio, Giuseppe [1 ,2 ]
Tonni, Erik [1 ,2 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] INFN, Sez Trieste, Via Bonomea 265, I-34136 Trieste, Italy
关键词
AdS-CFT Correspondence; Black Holes; Lattice Quantum Field Theory; DENSITY-MATRIX; QUANTUM; ENTANGLEMENT; DISTANCE; DISTRIBUTIONS; CHAIN;
D O I
10.1007/JHEP12(2020)101
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the circuit complexity for mixed bosonic Gaussian states in harmonic lattices in any number of dimensions. By employing the Fisher information geometry for the covariance matrices, we consider the optimal circuit connecting two states with vanishing first moments, whose length is identified with the complexity to create a target state from a reference state through the optimal circuit. Explicit proposals to quantify the spectrum complexity and the basis complexity are discussed. The purification of the mixed states is also analysed. In the special case of harmonic chains on the circle or on the infinite line, we report numerical results for thermal states and reduced density matrices.
引用
收藏
页数:105
相关论文
共 50 条
  • [1] Complexity of mixed Gaussian states from Fisher information geometry
    Giuseppe Di Giulio
    Erik Tonni
    Journal of High Energy Physics, 2020
  • [2] On the geometry of mixed states and the Fisher information tensor
    Contreras, I.
    Ercolessi, E.
    Schiavina, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (06)
  • [3] Geometry of mixed states for a q-bit and the quantum Fisher information tensor
    Ercolessi, E.
    Schiavina, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (36)
  • [4] The volume of Gaussian states by information geometry
    Felice, Domenico
    Minh Ha Quang
    Mancini, Stefano
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
  • [5] Maximal Quantum Fisher Information for Mixed States
    Fiderer, Lukas J.
    Fraisse, Julien M. E.
    Braun, Daniel
    PHYSICAL REVIEW LETTERS, 2019, 123 (25)
  • [6] Information geometry, simulation and complexity in Gaussian random fields
    Levada, Alexandre L.
    MONTE CARLO METHODS AND APPLICATIONS, 2016, 22 (02): : 81 - 107
  • [7] Fisher information and entanglement of non-Gaussian spin states
    Strobel, Helmut
    Muessel, Wolfgang
    Linnemann, Daniel
    Zibold, Tilman
    Hume, David B.
    Pezze, Luca
    Smerzi, Augusto
    Oberthaler, Markus K.
    SCIENCE, 2014, 345 (6195) : 424 - 427
  • [8] Complexity and Fisher information
    Binder, PM
    PHYSICAL REVIEW E, 2000, 61 (04): : R3303 - R3305
  • [9] Complexity and Fisher information
    Binder, P.-M.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04):
  • [10] From Complexity to Information Geometry and Beyond
    Ghikas, Demetris P. K.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2020, 23 (02): : 212 - 220