Carotid artery wall motion analysis from B-mode ultrasound using adaptive block matching: in silico evaluation and in vivo application

被引:36
|
作者
Gastounioti, A. [1 ]
Golemati, S. [2 ]
Stoitsis, J. S. [1 ]
Nikita, K. S. [1 ]
机构
[1] Natl Tech Univ Athens, Biomed Simulat & Imaging Lab, GR-10682 Athens, Greece
[2] Univ Athens, Sch Med, Intens Care Unit 1, Athina, Greece
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2013年 / 58卷 / 24期
关键词
PARAMETERS; DISEASE;
D O I
10.1088/0031-9155/58/24/8647
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Valid risk stratification for carotid atherosclerotic plaques represents a crucial public health issue toward preventing fatal cerebrovascular events. Although motion analysis (MA) provides useful information about arterial wall dynamics, the identification of motion-based risk markers remains a significant challenge. Considering that the ability of a motion estimator (ME) to handle changes in the appearance of motion targets has a major effect on accuracy in MA, we investigated the potential of adaptive block matching (ABM) MEs, which consider changes in image intensities over time. To assure the validity in MA, we optimized and evaluated the ABMMEs in the context of a specially designed in silico framework. ABM(FIRF2), which takes advantage of the periodicity characterizing the arterial wall motion, was the most effective ABM algorithm, yielding a 47% accuracy increase with respect to the conventional block matching. The in vivo application of ABM(FIRF2) revealed five potential risk markers: low movement amplitude of the normal part of the wall adjacent to the plaques in the radial (RMA(PWL)) and longitudinal (LMA(PWL)) directions, high radial motion amplitude of the plaque top surface (RMA(PTS)), and high relative movement, expressed in terms of radial strain (RSIPL) and longitudinal shear strain (LSSIPL), between plaque top and bottom surfaces. The in vivo results were reproduced by OFLK((WLS)) and ABM(KF-K2), MEs previously proposed by the authors and with remarkable in silico performances, thereby reinforcing the clinical values of the markers and the potential of those MEs. Future in vivo studies will elucidate with confidence the full potential of the markers.
引用
收藏
页码:8647 / 8661
页数:15
相关论文
共 50 条
  • [21] Carotid artery motion estimation from sequences of B-mode ultrasound images: Effect of dynamic range and persistence
    Stoitsis, John
    Golemati, Spyretta
    Perakis, Dimitris
    Alexandridi, Anastasia
    Davos, Constantinos
    Nikita, Konstantina S.
    IST 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL WORKSHOP ON IMAGING SYSTEMS AND TECHNIQUES, 2006, : 130 - +
  • [22] Automated detection of the carotid artery wall in B-mode ultrasound images using active contours initialized by the Hough transform
    Stoitsis, J.
    Golemati, S.
    Kendros, S.
    Nikita, K. S.
    2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-8, 2008, : 3146 - 3149
  • [23] Evaluation of common carotid artery changes in Saudi current smokers using medical ultrasound (B-mode and Doppler)
    Khalid S. Alzimami
    Mustafa Z. Mahmoud
    Abdelmoneim Sulieman
    Journal of Medical Ultrasonics, 2014, 41 : 351 - 357
  • [24] Evaluation of common carotid artery changes in Saudi current smokers using medical ultrasound (B-mode and Doppler)
    Alzimami, Khalid S.
    Mahmoud, Mustafa Z.
    Sulieman, Abdelmoneim
    JOURNAL OF MEDICAL ULTRASONICS, 2014, 41 (03) : 351 - 357
  • [25] Multiresolution features of carotid artery wall and plaque toward identifying vulnerable asymptomatic cases from B-mode ultrasound
    Golemati, S.
    Lehareas, S.
    Tsiaparas, N. N.
    Chatziioannou, A.
    Nikita, K. S.
    Perrea, D. N.
    2013 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2013, : 864 - 867
  • [26] Carotid Artery Motion Estimation From Sequences of B-Mode Ultrasound Images: Effect of Scanner Settings and Image Normalization
    Golemati, Spyretta
    Stoitsis, John S.
    Perakis, Dimitrios A.
    Varela, Emily
    Alexandridi, Anastasia
    Davos, Constantinos H.
    Nikita, Konstantina S.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2009, 58 (07) : 2102 - 2112
  • [27] P1.02 In Vivo Quantification of Carotid Artery Wall Dimensions: 3.0 Tesla Mri Versus B-Mode Ultrasound Imaging
    R. Duivenvoorden
    E. de Groot
    B. M. Elsen
    J. S. Lameris
    R. J. van der Geest
    E. S. G. Stroes
    J. J. P. Kastelein
    A. J. Nederveen
    Artery Research, 2010, 4 (4) : 153 - 153
  • [28] Motion estimation of the common carotid artery wall in ultrasound images using an improved sub-pixel block matching method
    Wang, Kun
    Zhang, Yufeng
    Li, Zhiyao
    OPTIK, 2022, 270
  • [29] Characterization of carotid artery plaques using real-time compound B-mode ultrasound
    Kern, R
    Szabo, K
    Hennerici, M
    Meairs, S
    STROKE, 2004, 35 (04) : 870 - 875
  • [30] Using two methods for recognition common carotid artery of B-mode longitudinal ultrasound image
    Wan, Jun
    Ruan, Qiuqi
    Li, Wei
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 1753 - 1756