Evolutionary latent space search for driving human portrait generation

被引:7
|
作者
Machin, Benjamin [1 ]
Nesmachnow, Sergio [1 ]
Toutouh, Jamal [2 ]
机构
[1] Univ Republica, Montevideo, Uruguay
[2] Univ Malaga, ITIS Software, Malaga, Spain
基金
欧盟地平线“2020”;
关键词
generative adversarial networks; evolutionary algorithms; latent space exploration; human portraits generation;
D O I
10.1109/LA-CCI48322.2021.9769851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents an evolutionary approach for synthetic human portraits generation based on the latent space exploration of a generative adversarial network. The idea is to produce different human face images very similar to a given target portrait. The approach applies StyleGAN2 for portrait generation and FaceNet for face similarity evaluation. The evolutionary search is based on exploring the real-coded latent space of StyleGAN2. The main results over both synthetic and real images indicate that the proposed approach generates accurate and diverse solutions, which represent realistic human portraits. The proposed research can contribute to improving the security of face recognition systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Image Generation Model Applying PCA on Latent Space
    Song, Myung Keun
    Niaz, Asim
    Choi, Kwang Nam
    2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023, 2023, : 419 - 423
  • [32] Combinatorial Optimization with Policy Adaptation using Latent Space Search
    Chalumeau, Felix
    Surana, Shikha
    Bonnet, Clement
    Grinsztajn, Nathan
    Pretorius, Arnu
    Laterre, Alexandre
    Barrett, Thomas D.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [33] Molecular Conformer Search with Low-Energy Latent Space
    Guo, Xiaomi
    Fang, Lincan
    Xu, Yong
    Duan, Wenhui
    Rinke, Patrick
    Todorovic, Milica
    Chen, Xi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, : 4574 - 4585
  • [34] Latent Space Search-Based Adaptive Template Generation for Enhanced Object Detection in Bin-Picking Applications
    Liu, Songtao
    Zhu, Yaonan
    Aoyama, Tadayoshi
    Nakaya, Masayuki
    Hasegawa, Yasuhisa
    SENSORS, 2024, 24 (18)
  • [35] The use of Latent Semantic Indexing to identify evolutionary trajectories in behaviour space
    Edmonds, Ian R.
    ADVANCES IN ARTIFICIAL LIFE, 2001, 2159 : 613 - 622
  • [36] A combination of driving method with simulated annealing to search conformational space
    Fadrna, E
    Koca, J
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1997, 398 : 523 - 528
  • [37] Search Space Generation and Pruning System for Autotuners
    Luszczek, Piotr
    Gates, Mark
    Kurzak, Jakub
    Danalis, Anthony
    Dongarra, Jack
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016, : 1545 - 1554
  • [38] Diversity-guided Search Exploration for Self-driving Cars Test Generation through Frenet Space Encoding
    Blattner, Timo
    Kehrer, Timo
    Birchler, Christian
    Panichella, Sebastiano
    2024 IEEE/ACM INTERNATIONAL WORKSHOP ON SEARCH-BASED AND FUZZ TESTING, SBFT 2024, 2024, : 9 - 12
  • [39] Human Portrait Generation System for Robot Arm Drawing
    Lin, Chyi-Yeu
    Chuang, Li-Wen
    Mac, Thi Thoa
    2009 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1-3, 2009, : 1746 - 1751
  • [40] GENERATION OF VIEWED IMAGE CAPTIONS FROM HUMAN BRAIN ACTIVITY VIA UNSUPERVISED TEXT LATENT SPACE
    Takada, Saya
    Togo, Ren
    Ogawa, Takahiro
    Haseyama, Miki
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2521 - 2525