Evolutionary latent space search for driving human portrait generation

被引:7
|
作者
Machin, Benjamin [1 ]
Nesmachnow, Sergio [1 ]
Toutouh, Jamal [2 ]
机构
[1] Univ Republica, Montevideo, Uruguay
[2] Univ Malaga, ITIS Software, Malaga, Spain
基金
欧盟地平线“2020”;
关键词
generative adversarial networks; evolutionary algorithms; latent space exploration; human portraits generation;
D O I
10.1109/LA-CCI48322.2021.9769851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents an evolutionary approach for synthetic human portraits generation based on the latent space exploration of a generative adversarial network. The idea is to produce different human face images very similar to a given target portrait. The approach applies StyleGAN2 for portrait generation and FaceNet for face similarity evaluation. The evolutionary search is based on exploring the real-coded latent space of StyleGAN2. The main results over both synthetic and real images indicate that the proposed approach generates accurate and diverse solutions, which represent realistic human portraits. The proposed research can contribute to improving the security of face recognition systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Efficient evolutionary neural architecture search based on hybrid search space
    Gong, Tao
    Ma, Yongjie
    Xu, Yang
    Song, Changwei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3313 - 3326
  • [22] Password Generation and Search Space Reduction
    Helkala, Kirsi
    Snekkenes, Einar
    JOURNAL OF COMPUTERS, 2009, 4 (07) : 663 - 669
  • [23] Musical Composition by Interactive Evolutionary Computation and Latent Space Modeling
    Masuda, Naotake
    Iba, Hitoshi
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 2792 - 2797
  • [24] Program Synthesis as Latent Continuous Optimization: Evolutionary Search in Neural Embeddings
    Liskowski, Pawel
    Krawiec, Krzysztof
    Toklu, Nihat Engin
    Swan, Jerry
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 359 - 367
  • [25] Crossover invariant subsets of the search space for evolutionary algorithms
    Mitavskiy, B
    EVOLUTIONARY COMPUTATION, 2004, 12 (01) : 19 - 46
  • [26] VISUAL SPACE PERCEPTION MODEL IDENTIFICATION BY EVOLUTIONARY SEARCH
    Bittermann, M.
    Sariyildiz, S.
    Ciftcioglu, Oe
    9TH INTERNATIONAL DESIGN CONFERENCE - DESIGN 2006, VOLS 1 AND 2, 2006, (36): : 185 - +
  • [27] Evolutionary Search for Automated Generation of EQ-algebras
    Habiballa, Hashim
    Novak, Vilem
    Dyba, Martin
    Schenk, Jiri
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [28] Latent Space Expanded Variational Autoencoder for Sentence Generation
    Song, Tianbao
    Sun, Jingbo
    Chen, Bo
    Peng, Weiming
    Song, Jihua
    IEEE ACCESS, 2019, 7 : 144618 - 144627
  • [29] Targeting Requirements Violations of Autonomous Driving Systems by Dynamic Evolutionary Search
    Luo, Yixing
    Xiao-Yi Zhang
    Arcaini, Paolo
    Jin, Zhi
    Zhao, Haiyan
    Ishikawa, Fuyuki
    Wu, Rongxin
    Xie, Tao
    2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING ASE 2021, 2021, : 279 - 291
  • [30] Exploring methods for the generation of visual counterfactuals in the latent space
    Morales, David
    Cuellar, Manuel P.
    Morales, Diego P.
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (03)