Evolutionary latent space search for driving human portrait generation

被引:7
|
作者
Machin, Benjamin [1 ]
Nesmachnow, Sergio [1 ]
Toutouh, Jamal [2 ]
机构
[1] Univ Republica, Montevideo, Uruguay
[2] Univ Malaga, ITIS Software, Malaga, Spain
基金
欧盟地平线“2020”;
关键词
generative adversarial networks; evolutionary algorithms; latent space exploration; human portraits generation;
D O I
10.1109/LA-CCI48322.2021.9769851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents an evolutionary approach for synthetic human portraits generation based on the latent space exploration of a generative adversarial network. The idea is to produce different human face images very similar to a given target portrait. The approach applies StyleGAN2 for portrait generation and FaceNet for face similarity evaluation. The evolutionary search is based on exploring the real-coded latent space of StyleGAN2. The main results over both synthetic and real images indicate that the proposed approach generates accurate and diverse solutions, which represent realistic human portraits. The proposed research can contribute to improving the security of face recognition systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Multiobjective evolutionary search of the latent space of Generative Adversarial Networks for human face generation
    Correa, Jairo
    Mignaco, Jimena
    Rey, Gonzalo
    Machin, Benjamin
    Nesmachnow, Sergio
    Toutouh, Jamal
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 1768 - 1776
  • [2] Multi-target evolutionary latent space search of a generative adversarial network for human face generation
    Machin, Benjamin
    Nesmachnow, Sergio
    Toutouh, Jamal
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 1878 - 1886
  • [3] Fashion Style Generation: Evolutionary Search with Gaussian Mixture Models in the Latent Space
    Grabe, Imke
    Zhu, Jichen
    Agirrezabal, Manex
    ARTIFICIAL INTELLIGENCE IN MUSIC, SOUND, ART AND DESIGN (EVOMUSART 2022), 2022, : 84 - 100
  • [4] Evolutionary Planning in Latent Space
    Olesen, Thor V. A. N.
    Nguyen, Dennis T. T.
    Palm, Rasmus B.
    Risi, Sebastian
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2021, 2021, 12694 : 522 - 536
  • [5] Guided latent space regression for human motion generation
    Avizzano, Carlo Alberto
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (04) : 340 - 350
  • [6] A Structured Latent Space for Human Body Motion Generation
    Marsot, Mathieu
    Wuhrer, Stefanie
    Franco, Jean-Sebastien
    Durocher, Stephane
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 557 - 566
  • [7] Sparse Latent Space Policy Search
    Luck, Kevin Sebastian
    Pajarinen, Joni
    Berger, Erik
    Kyrki, Ville
    Ben Amor, Heni
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1911 - 1918
  • [8] Latent Space Policy Search for Robotics
    Luck, Kevin Sebastian
    Neumann, Gerhard
    Berger, Erik
    Peters, Jan
    Ben Amor, Heni
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 1434 - 1440
  • [9] Priority-Centric Human Motion Generation in Discrete Latent Space
    Kong, Hanyang
    Gong, Kehong
    Lian, Dongze
    Mi, Michael Bi
    Wang, Xinchao
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 14760 - 14770
  • [10] Evolutionary optimization in multimodal search space
    Schneider, G
    Schuchhardt, J
    Wrede, P
    BIOLOGICAL CYBERNETICS, 1996, 74 (03) : 203 - 207