Synchronization of coupled Boolean phase oscillators

被引:29
|
作者
Rosin, David P. [1 ,2 ]
Rontani, Damien [1 ,3 ,4 ]
Gauthier, Daniel J. [1 ]
机构
[1] Duke Univ, Dept Phys, Durham, NC 27708 USA
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[3] Supelec, OPTEL Res Grp, F-57070 Metz, France
[4] Supelec, LMOPS EA 4423, F-57070 Metz, France
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
关键词
NETWORKS; CHAOS;
D O I
10.1103/PhysRevE.89.042907
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We design, characterize, and couple Boolean phase oscillators that include state-dependent feedback delay. The state-dependent delay allows us to realize an adjustable coupling strength, even though only Boolean signals are exchanged. Specifically, increasing the coupling strength via the range of state-dependent delay leads to larger locking ranges in uni-and bidirectional coupling of oscillators in both experiment and numerical simulation with a piecewise switching model. In the unidirectional coupling scheme, we unveil asymmetric triangular-shaped locking regions (Arnold tongues) that appear at multiples of the natural frequency of the oscillators. This extends observations of a single locking region reported in previous studies. In the bidirectional coupling scheme, we map out a symmetric locking region in the parameter space of frequency detuning and coupling strength. Because of the large scalability of our setup, our observations constitute a first step towards realizing large-scale networks of coupled oscillators to address fundamental questions on the dynamical properties of networks in a new experimental setting.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Synchronization of Phase-coupled Oscillators with Arbitrary Topology
    Mallada, Enrique
    Tang, Ao
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 1777 - 1782
  • [32] Periodic coupling suppresses synchronization in coupled phase oscillators
    Li, Sansan
    Wang, Xingang
    Guan, Shuguang
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [33] Automatic control of phase synchronization in coupled complex oscillators
    Belykh, VN
    Osipov, GV
    Kuckländer, N
    Blasius, B
    Kurths, M
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 200 (1-2) : 81 - 104
  • [34] Clustering and Synchronization in an Array of Repulsively Coupled Phase Oscillators
    LI Juan WU Liang ZHU Shi-Qun School of Physical Science and Technology
    Communications in Theoretical Physics, 2007, 48 (07) : 159 - 162
  • [35] From phase to lag synchronization in coupled chaotic oscillators
    Rosenblum, MG
    Pikovsky, AS
    Kurths, J
    PHYSICAL REVIEW LETTERS, 1997, 78 (22) : 4193 - 4196
  • [36] Spurious detection of phase synchronization in coupled nonlinear oscillators
    Xu, Limei
    Chen, Zhi
    Hu, Kun
    Stanley, H. Eugene
    Ivanov, Plamen Ch.
    PHYSICAL REVIEW E, 2006, 73 (06):
  • [37] Routes to complete synchronization via phase synchronization in coupled nonidentical chaotic oscillators
    Rim, S
    Kim, I
    Kang, P
    Park, YJ
    Kim, CM
    PHYSICAL REVIEW E, 2002, 66 (01): : 1 - 015205
  • [38] Amplitude and phase effects on the synchronization of delay-coupled oscillators
    D'Huys, O.
    Vicente, R.
    Danckaert, J.
    Fischer, I.
    CHAOS, 2010, 20 (04)
  • [39] Phase synchronization of two coupled rossler oscillators with internal resonance
    Faculty of Science, Jiangsu University, Zhenjiang 212013, China
    不详
    Lixue Xuebao, 2008, 4 (572-576):
  • [40] Reply to "comment on 'periodic phase synchronization in coupled chaotic oscillators' "
    Kye, WH
    Lee, DS
    Rim, S
    Kim, CM
    Park, YJ
    PHYSICAL REVIEW E, 2006, 73 (03):