Synchronization of coupled Boolean phase oscillators

被引:29
|
作者
Rosin, David P. [1 ,2 ]
Rontani, Damien [1 ,3 ,4 ]
Gauthier, Daniel J. [1 ]
机构
[1] Duke Univ, Dept Phys, Durham, NC 27708 USA
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[3] Supelec, OPTEL Res Grp, F-57070 Metz, France
[4] Supelec, LMOPS EA 4423, F-57070 Metz, France
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
关键词
NETWORKS; CHAOS;
D O I
10.1103/PhysRevE.89.042907
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We design, characterize, and couple Boolean phase oscillators that include state-dependent feedback delay. The state-dependent delay allows us to realize an adjustable coupling strength, even though only Boolean signals are exchanged. Specifically, increasing the coupling strength via the range of state-dependent delay leads to larger locking ranges in uni-and bidirectional coupling of oscillators in both experiment and numerical simulation with a piecewise switching model. In the unidirectional coupling scheme, we unveil asymmetric triangular-shaped locking regions (Arnold tongues) that appear at multiples of the natural frequency of the oscillators. This extends observations of a single locking region reported in previous studies. In the bidirectional coupling scheme, we map out a symmetric locking region in the parameter space of frequency detuning and coupling strength. Because of the large scalability of our setup, our observations constitute a first step towards realizing large-scale networks of coupled oscillators to address fundamental questions on the dynamical properties of networks in a new experimental setting.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Stability and multistability of synchronization in networks of coupled phase oscillators
    翟云
    王璇
    肖井华
    郑志刚
    Chinese Physics B, 2023, (06) : 89 - 97
  • [22] Automatic control of phase synchronization in coupled complex oscillators
    Belykh, VN
    Kuckländer, N
    Osipov, GV
    Blasius, B
    Kurths, J
    2005 INTERNATIONAL CONFERENCE ON PHYSICS AND CONTROL (PHYSCON), 2005, : 92 - 99
  • [23] Clustering and synchronization in an array of repulsively coupled phase oscillators
    Li Juan
    Wu Liang
    Zhu Shi-Qun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (01) : 159 - 162
  • [24] Phase synchronization of Rossler in two coupled harmonic oscillators
    Hao, JH
    Li, W
    ACTA PHYSICA SINICA, 2005, 54 (08) : 3491 - 3496
  • [25] Generalized phase synchronization in unidirectionally coupled chaotic oscillators
    Lee, DS
    Kye, WH
    Rim, S
    Kwon, TY
    Kim, CM
    PHYSICAL REVIEW E, 2003, 67 (04):
  • [26] Synchronization of coupled phase oscillators: Order parameter theory
    Zheng Zhi-Gang
    Yun, Zhai
    Wang Xue-Bin
    Chen Hong-Bin
    Can, Xu
    ACTA PHYSICA SINICA, 2020, 69 (08)
  • [27] Phase synchronization in coupled chaotic oscillators with time delay
    Chen, JY
    Wong, KW
    Shuai, JW
    PHYSICAL REVIEW E, 2002, 66 (05): : 7
  • [28] Phase synchronization of coupled Rossler oscillators: Amplitude effect
    Li Xiao-Wen
    Zheng Zhi-Gang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 47 (02) : 265 - 269
  • [29] Phase Synchronization of Coupled Rossler Oscillators:Amplitude Effect
    LI Xiao-Wen ZHENG Zhi-Gang Department of Physics and the Beijing-Hong-Kong-Singapore Joint Center for Nonlinear and Coruplex Systems (Beijing)
    Communications in Theoretical Physics, 2007, 47 (02) : 265 - 269
  • [30] Comment on "periodic phase synchronization in coupled chaotic oscillators"
    Pazó, D
    Matías, MA
    PHYSICAL REVIEW E, 2006, 73 (03): : 1 - 2