First-Order Piezoresistive Coefficients of Lateral NMOS FETs on 4H Silicon Carbide

被引:5
|
作者
Jaeger, Richard C. [1 ]
Chen, Jun [2 ]
Suhling, Jeffrey C. [2 ]
Fursin, Leonid [3 ]
机构
[1] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[2] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
[3] United Silicon Carbide Inc, Monmouth Jct, NJ 08852 USA
关键词
Silicon carbide; NMOSFET; piezoresistance; mechanical stress; stress sensor; stress sensor rosette; CMOS SENSOR ARRAYS; STRESS SENSORS; COMPONENTS;
D O I
10.1109/JSEN.2019.2905787
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stress dependent properties and modeling of lateral enhancement-mode NMOS FETS on 4H silicon carbide are described in detail for a wide range of bias conditions. NFET stress response is shown to include a strong threshold voltage component in addition to the expected mobility component, and a theoretical model for the stress dependencies closely matches the measured data. Values of the longitudinal and transverse piezoresistive coefficients are extracted from linear region measurements of the MOS transistors as a function of gate drive for the both crystallographic and chip coordinate systems. At low gate drive, threshold variations become much more important than the classic mobility terms, whereas high gate drive is utilized to extract the mobility terms from the data. Design of a four-transistor temperature compensated stress sensor rosette that requires a value of only one combined piezoresistive coefficient is also presented.
引用
收藏
页码:6037 / 6045
页数:9
相关论文
共 50 条
  • [11] Impurities and defects in 4H silicon carbide
    Wang, Rong
    Huang, Yuanchao
    Yang, Deren
    Pi, Xiaodong
    APPLIED PHYSICS LETTERS, 2023, 122 (18)
  • [12] Dislocation conversion in 4H silicon carbide epitaxy
    Ha, S
    Mieszkowski, P
    Skowronski, M
    Rowland, LB
    JOURNAL OF CRYSTAL GROWTH, 2002, 244 (3-4) : 257 - 266
  • [13] Investigation of microplasma breakdown in 4H silicon carbide
    Zimmermann, U
    Hallen, A
    Konstantinov, AO
    Breitholtz, B
    WIDE-BANDGAP SEMICONDUCTORS FOR HIGH POWER, HIGH FREQUENCY AND HIGH TEMPERATURE, 1998, 512 : 151 - 156
  • [14] Implantation and annealing of aluminum in 4H silicon carbide
    Rambach, M
    Schmid, F
    Krieger, M
    Frey, L
    Bauer, AJ
    Pensl, G
    Ryssel, H
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 237 (1-2): : 68 - 71
  • [15] Defect structure of 4H silicon carbide ingots
    Lebedev, A. O.
    Avrov, D. D.
    Bulatov, A. V.
    Dorozhkin, S. I.
    Tairov, Yu. M.
    Fadeev, A. Yu.
    JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) : 394 - 396
  • [16] Defects in 4H silicon carbide CVD epilayers
    Zhou, L
    Pirouz, P
    Powell, JA
    DEFECTS IN ELECTRONIC MATERIALS II, 1997, 442 : 631 - 636
  • [17] Low frequency noise in 4H silicon carbide
    Levinshtein, ME
    Rumyantsev, SL
    Palmour, JW
    Slater, DB
    JOURNAL OF APPLIED PHYSICS, 1997, 81 (04) : 1758 - 1762
  • [18] Infrared absorption spectra of 4H silicon carbide
    C.Q. Chen
    R. Helbig
    F. Engelbrecht
    J. Zeman
    Applied Physics A, 2001, 72 : 717 - 720
  • [19] Infrared absorption spectra of 4H silicon carbide
    Chen, CQ
    Helbig, R
    Engelbrecht, F
    Zeman, J
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (06): : 717 - 720
  • [20] Annealing of Al implanted 4H silicon carbide
    Hallen, A.
    Suchodolskis, A.
    Osterman, J.
    Abtin, L.
    Linnarsson, M.
    PHYSICA SCRIPTA, 2006, T126 : 37 - 40