Recovery of quantile and quantile density function using the frequency moments

被引:1
|
作者
Mnatsakanov, Robert M. [1 ]
Sborshchikovi, Aleksandre [2 ]
机构
[1] West Virginia Univ, Dept Stat, POB 6330, Morgantown, WV 26506 USA
[2] I Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, 1 Il Chavchavadze Ave, GE-0179 Tbilisi, Georgia
关键词
Quantile function; Quantile density function; Frequency moments; Expected shortfall;
D O I
10.1016/j.spl.2018.04.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of recovering quantiles and quantile density functions of a positive random variable via the values of frequency moments is studied. The uniform upper bounds of the proposed approximations are derived. Several simple examples and corresponding plots illustrate the behavior of the recovered approximations. Some applications of the constructions are discussed as well. Namely, using the empirical counterparts of the constructions yield the estimates of the quantiles, and the quantile density functions. By means of simulations, the average errors in terms of L-2-norm are evaluated to justify the consistency of the estimate of the quantile density function. As an application of the constructions, the question of estimating the so-called expected shortfall measure in risk models is also studied. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [41] A DENSITY-QUANTILE FUNCTION-APPROACH TO OPTIMAL SPACING SELECTION
    EUBANK, RL
    ANNALS OF STATISTICS, 1981, 9 (03): : 494 - 500
  • [42] Derivation of sample oriented quantile function using maximum entropy and self-determined probability weighted moments
    Deng, Jian
    Pandey, M. D.
    ENVIRONMETRICS, 2010, 21 (02) : 113 - 132
  • [43] Parameters and quantile estimation for fatigue life distribution using probability weighted moments
    Deng, Jian
    Gu, Desheng
    Li, Xibing
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2004, 21 (05): : 609 - 613
  • [44] Regional flood frequency for Queensland using the quantile regression technique
    Palmen, L. B.
    Weeks, W. D.
    AUSTRALASIAN JOURNAL OF WATER RESOURCES, 2011, 15 (01): : 47 - 57
  • [45] SMOOTH DENSITY SPATIAL QUANTILE REGRESSION
    Brantley, Halley
    Fuentes, Montserrat
    Guinness, Joseph
    Thoma, Eben
    STATISTICA SINICA, 2021, 31 (03) : 1167 - 1187
  • [46] Wind quantile estimation using a pooled frequency analysis approach
    Goel, NK
    Burn, DH
    Pandey, MD
    An, Y
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2004, 92 (06) : 509 - 528
  • [47] On function-on-function linear quantile regression
    Mutis, Muge
    Beyaztas, Ufuk
    Karaman, Filiz
    Shang, Han Lin
    JOURNAL OF APPLIED STATISTICS, 2024,
  • [48] Function-on-Function Partial Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    Alin, Aylin
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 149 - 174
  • [49] Function-on-Function Linear Quantile Regression
    Beyaztas, Ufuk
    Shang, Han Lin
    MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) : 322 - 341
  • [50] Quantile Approximation of the Chi-square Distribution using the Quantile Mechanics
    Okagbue, Hilary I.
    Adamu, Muminu O.
    Anake, Timothy A.
    WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, WCECS 2017, VOL I, 2017, : 477 - 483