Recovery of quantile and quantile density function using the frequency moments

被引:1
|
作者
Mnatsakanov, Robert M. [1 ]
Sborshchikovi, Aleksandre [2 ]
机构
[1] West Virginia Univ, Dept Stat, POB 6330, Morgantown, WV 26506 USA
[2] I Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, 1 Il Chavchavadze Ave, GE-0179 Tbilisi, Georgia
关键词
Quantile function; Quantile density function; Frequency moments; Expected shortfall;
D O I
10.1016/j.spl.2018.04.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of recovering quantiles and quantile density functions of a positive random variable via the values of frequency moments is studied. The uniform upper bounds of the proposed approximations are derived. Several simple examples and corresponding plots illustrate the behavior of the recovered approximations. Some applications of the constructions are discussed as well. Namely, using the empirical counterparts of the constructions yield the estimates of the quantiles, and the quantile density functions. By means of simulations, the average errors in terms of L-2-norm are evaluated to justify the consistency of the estimate of the quantile density function. As an application of the constructions, the question of estimating the so-called expected shortfall measure in risk models is also studied. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [31] Quantile Function Expansion Using Regularly Varying Functions
    Fung, Thomas
    Seneta, Eugene
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2018, 20 (04) : 1091 - 1103
  • [32] Testing exponentiality using mean residual quantile function
    P. G. Sankaran
    N. N. Midhu
    Statistical Papers, 2016, 57 : 235 - 247
  • [33] MULTIVARIATE QUANTILE FUNCTION MODELS
    Cai, Yuzhi
    STATISTICA SINICA, 2010, 20 (02) : 481 - 496
  • [34] The generalized sigmoidal quantile function
    Hutson, Alan D.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (02) : 799 - 813
  • [35] Testing exponentiality using mean residual quantile function
    Sankaran, P. G.
    Midhu, N. N.
    STATISTICAL PAPERS, 2016, 57 (01) : 235 - 247
  • [36] Quantile Function Expansion Using Regularly Varying Functions
    Thomas Fung
    Eugene Seneta
    Methodology and Computing in Applied Probability, 2018, 20 : 1091 - 1103
  • [37] Estimating expected shortfall using a quantile function model
    Cai, Yuzhi
    INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2021, 26 (03) : 4332 - 4360
  • [38] Multivariate Quantile Function Forecaster
    Kan, Kelvin
    Park, Youngsuk
    Aubet, Francois-Xavier
    Benidis, Konstantinos
    Gasthaus, Jan
    Januschowski, Tim
    Ruthotto, Lars
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [39] Quantile based entropy function
    Sunoj, S. M.
    Sankaran, P. G.
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (06) : 1049 - 1053
  • [40] Dynamic quantile function models
    Chen, Wilson Ye
    Peters, Gareth W.
    Gerlach, Richard H.
    Sisson, Scott A.
    QUANTITATIVE FINANCE, 2022, 22 (09) : 1665 - 1691