Taking one charge off a two-dimensional Wigner crystal

被引:6
|
作者
Antlanger, Moritz [1 ,2 ,3 ,4 ]
Mazars, Martial [3 ,4 ]
Samaj, Ladislav [4 ,5 ,6 ]
Kahl, Gerhard [1 ,2 ]
Trizac, Emmanuel [4 ,5 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Ctr Computat Mat Sci CMS, A-1040 Vienna, Austria
[3] Univ Paris 11, Phys Theor Lab, UMR 8627, Orsay, France
[4] CNRS, F-91405 Orsay, France
[5] Univ Paris 11, Lab Phys Theor & Modeles Stat, UMR 8626, Orsay, France
[6] Slovak Acad Sci, Inst Phys, Bratislava, Slovakia
基金
奥地利科学基金会;
关键词
2D Wigner crystal; lattice sums; polarisation; vacancy; PHASE-TRANSITIONS; PLANAR; ELECTRONS; DEFECTS;
D O I
10.1080/00268976.2014.901569
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A planar array of identical charges at vanishing temperature forms a Wigner crystal with hexagonal symmetry. We take off one (reference) charge in a perpendicular direction, hold it fixed, and search for the ground state of the whole system. The planar projection of the reference charge should then evolve from a sixfold coordination (centre of a hexagon) for small distances to a threefold arrangement (centre of a triangle), at large distances d from the plane. The aim of this paper is to describe the corresponding non-trivial lattice transformation. For that purpose, two numerical methods (direct energy minimisation and Monte Carlo simulations), together with an analytical treatment, are presented. Our results indicate that the d = 0 and d -> infinity limiting cases extend for finite values of d from the respective starting points into two sequences of stable states, with intersecting energies at some value d(t); beyond this value the branches continue as metastable states.
引用
收藏
页码:1336 / 1349
页数:14
相关论文
共 50 条
  • [41] Signatures for Wigner Crystal Formation in the Chemical Potential of a Two-Dimensional Electron System
    Zhang, Ding
    Huang, Xuting
    Dietsche, Werner
    von Klitzing, Klaus
    Smet, Jurgen H.
    PHYSICAL REVIEW LETTERS, 2014, 113 (07)
  • [42] Charge Critical Phenomena in a Field Heterostructure with Two-Dimensional Crystal
    Danilyuk, Alexander L.
    Podryabinkin, Denis A.
    Shaposhnikov, Victor L.
    Prischepa, Serghej L.
    SOLIDS, 2024, 5 (02): : 193 - 207
  • [43] Charge fluctuations in the two-dimensional one-component plasma
    Levesque, D
    Weis, JJ
    Lebowitz, JL
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (1-2) : 209 - 222
  • [44] Charge Fluctuations in the Two-Dimensional One-Component Plasma
    D. Levesque
    J.-J. Weis
    J. L. Lebowitz
    Journal of Statistical Physics, 2000, 100 : 209 - 222
  • [45] Efficient Calculation of the Two-Dimensional Wigner Potential
    Ellinghaus, P.
    Nedjalkov, M.
    Selberherr, S.
    2014 INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS (IWCE), 2014,
  • [46] Imaging two-dimensional generalized Wigner crystals
    Li, Hongyuan
    Li, Shaowei
    Regan, Emma C.
    Wang, Danqing
    Zhao, Wenyu
    Kahn, Salman
    Yumigeta, Kentaro
    Blei, Mark
    Taniguchi, Takashi
    Watanabe, Kenji
    Tongay, Sefaattin
    Zettl, Alex
    Crommie, Michael F.
    Wang, Feng
    NATURE, 2021, 597 (7878) : 650 - +
  • [47] Theory of a Two-Dimensional Rotating Wigner Cluster
    Mahmoodian, Mahmood M.
    Mahmoodian, Mehrdad M.
    Entin, M., V
    JETP LETTERS, 2022, 115 (10) : 608 - 614
  • [48] Two-dimensional Transient Wigner Particle Model
    Sellier, J. M.
    Nedjalkov, M.
    Dimov, I
    Selberherr, S.
    2013 18TH INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2013), 2013, : 404 - 407
  • [49] Cyclotron resonance of a two-dimensional Wigner solid
    Monarkha, YP
    LOW TEMPERATURE PHYSICS, 2001, 27 (06) : 463 - 467
  • [50] Theory of a Two-Dimensional Rotating Wigner Cluster
    Mahmood M. Mahmoodian
    Mehrdad M. Mahmoodian
    M. V. Entin
    JETP Letters, 2022, 115 : 608 - 614