Taking one charge off a two-dimensional Wigner crystal

被引:6
|
作者
Antlanger, Moritz [1 ,2 ,3 ,4 ]
Mazars, Martial [3 ,4 ]
Samaj, Ladislav [4 ,5 ,6 ]
Kahl, Gerhard [1 ,2 ]
Trizac, Emmanuel [4 ,5 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Ctr Computat Mat Sci CMS, A-1040 Vienna, Austria
[3] Univ Paris 11, Phys Theor Lab, UMR 8627, Orsay, France
[4] CNRS, F-91405 Orsay, France
[5] Univ Paris 11, Lab Phys Theor & Modeles Stat, UMR 8626, Orsay, France
[6] Slovak Acad Sci, Inst Phys, Bratislava, Slovakia
基金
奥地利科学基金会;
关键词
2D Wigner crystal; lattice sums; polarisation; vacancy; PHASE-TRANSITIONS; PLANAR; ELECTRONS; DEFECTS;
D O I
10.1080/00268976.2014.901569
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A planar array of identical charges at vanishing temperature forms a Wigner crystal with hexagonal symmetry. We take off one (reference) charge in a perpendicular direction, hold it fixed, and search for the ground state of the whole system. The planar projection of the reference charge should then evolve from a sixfold coordination (centre of a hexagon) for small distances to a threefold arrangement (centre of a triangle), at large distances d from the plane. The aim of this paper is to describe the corresponding non-trivial lattice transformation. For that purpose, two numerical methods (direct energy minimisation and Monte Carlo simulations), together with an analytical treatment, are presented. Our results indicate that the d = 0 and d -> infinity limiting cases extend for finite values of d from the respective starting points into two sequences of stable states, with intersecting energies at some value d(t); beyond this value the branches continue as metastable states.
引用
收藏
页码:1336 / 1349
页数:14
相关论文
共 50 条
  • [31] DEFECT STATES AND PHASE-TRANSITION IN THE TWO-DIMENSIONAL WIGNER CRYSTAL
    HOLZ, A
    PHYSICAL REVIEW B, 1980, 22 (08): : 3692 - 3705
  • [32] Dislocation melting of a two-dimensional wigner crystal in the presence of random fields
    Dzyubenko, A.B.
    Lozovik, Yu.E.
    Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 1992, 102 (01):
  • [33] Two-dimensional Wigner crystal on helium films:: An indication of quantum melting
    da Cunha, J. A. R.
    Candido, Ladir
    BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (3A) : 682 - 684
  • [34] Solitons in a one-dimensional Wigner crystal
    Pustilnik, M.
    Matveev, K. A.
    PHYSICAL REVIEW B, 2015, 91 (16)
  • [35] Multiple-spin exchange in a two-dimensional Wigner crystal in a magnetic field
    Hirashima, DS
    Kubo, K
    PHYSICAL REVIEW B, 2001, 63 (12)
  • [36] Equilibration of a One-Dimensional Wigner Crystal
    Matveev, K. A.
    Andreev, A. V.
    Pustilnik, M.
    PHYSICAL REVIEW LETTERS, 2010, 105 (04)
  • [37] Bragg-Cherenkov scattering and nonlinear conductivity of a two-dimensional Wigner crystal
    Dykman, MI
    Rubo, YG
    PHYSICAL REVIEW LETTERS, 1997, 78 (25) : 4813 - 4816
  • [38] TWO-DIMENSIONAL WIGNER CRYSTAL OF ELECTRONS ON A HELIUM FILM - STATIC AND DYNAMIC PROPERTIES
    PEETERS, FM
    PHYSICAL REVIEW B, 1984, 30 (01): : 159 - 165
  • [39] Spin-spin interaction and magnetic state of a two-dimensional Wigner crystal
    Flambaum, VV
    Ponomarev, IV
    Sushkov, OP
    PHYSICAL REVIEW B, 1999, 59 (06) : 4163 - 4169
  • [40] Hall-velocity limited magnetoconductivity in a classical two-dimensional Wigner crystal
    Kristensen, A
    Djerfi, K
    Fozooni, P
    Lea, MJ
    Richardson, PJ
    SantrichBadal, A
    Blackburn, A
    vanderHeijden, RW
    PHYSICAL REVIEW LETTERS, 1996, 77 (07) : 1350 - 1353