Taking one charge off a two-dimensional Wigner crystal

被引:6
|
作者
Antlanger, Moritz [1 ,2 ,3 ,4 ]
Mazars, Martial [3 ,4 ]
Samaj, Ladislav [4 ,5 ,6 ]
Kahl, Gerhard [1 ,2 ]
Trizac, Emmanuel [4 ,5 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Ctr Computat Mat Sci CMS, A-1040 Vienna, Austria
[3] Univ Paris 11, Phys Theor Lab, UMR 8627, Orsay, France
[4] CNRS, F-91405 Orsay, France
[5] Univ Paris 11, Lab Phys Theor & Modeles Stat, UMR 8626, Orsay, France
[6] Slovak Acad Sci, Inst Phys, Bratislava, Slovakia
基金
奥地利科学基金会;
关键词
2D Wigner crystal; lattice sums; polarisation; vacancy; PHASE-TRANSITIONS; PLANAR; ELECTRONS; DEFECTS;
D O I
10.1080/00268976.2014.901569
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A planar array of identical charges at vanishing temperature forms a Wigner crystal with hexagonal symmetry. We take off one (reference) charge in a perpendicular direction, hold it fixed, and search for the ground state of the whole system. The planar projection of the reference charge should then evolve from a sixfold coordination (centre of a hexagon) for small distances to a threefold arrangement (centre of a triangle), at large distances d from the plane. The aim of this paper is to describe the corresponding non-trivial lattice transformation. For that purpose, two numerical methods (direct energy minimisation and Monte Carlo simulations), together with an analytical treatment, are presented. Our results indicate that the d = 0 and d -> infinity limiting cases extend for finite values of d from the respective starting points into two sequences of stable states, with intersecting energies at some value d(t); beyond this value the branches continue as metastable states.
引用
收藏
页码:1336 / 1349
页数:14
相关论文
共 50 条
  • [1] A two-dimensional Wigner crystal
    Monarkha, Yu. P.
    Syvokon, V. E.
    LOW TEMPERATURE PHYSICS, 2012, 38 (12) : 1067 - 1095
  • [2] Vacancions in the two-dimensional Wigner crystal
    Bisti, V. E.
    XXXIV INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER, 2020, 1556
  • [3] Transport properties of a Wigner crystal in one- and two-dimensional asymmetric periodic potentials: Wigner crystal diode
    Zakharov, Mikhail Y.
    Demidov, Denis
    Shepelyansky, Dima L.
    PHYSICAL REVIEW B, 2019, 99 (15)
  • [4] The melting of the classical two-dimensional Wigner crystal
    Mazars, M.
    EPL, 2015, 110 (02)
  • [5] Quantum melting of a two-dimensional Wigner crystal
    Dolgopolov, V. T.
    PHYSICS-USPEKHI, 2017, 60 (07) : 731 - 742
  • [6] Two-dimensional Wigner crystal in anisotropic semiconductors
    Wan, X
    Bhatt, RN
    PHYSICAL REVIEW B, 2002, 65 (23) : 2332091 - 2332094
  • [7] On the quantum melting of the two-dimensional Wigner crystal
    Waintal, X
    PHYSICAL REVIEW B, 2006, 73 (07):
  • [8] Dynamical response of a pinned two-dimensional Wigner crystal
    Fogler, MM
    Huse, DA
    PHYSICAL REVIEW B, 2000, 62 (11): : 7553 - 7570
  • [9] RMS ELECTRON DISPLACEMENT IN TWO-DIMENSIONAL WIGNER CRYSTAL
    MONARKHA, YP
    SOKOLOV, SS
    FIZIKA NIZKIKH TEMPERATUR, 1982, 8 (04): : 350 - 360
  • [10] Topological Phonon Modes in a Two-Dimensional Wigner Crystal
    Ji, Wen-Cheng
    Shi, Jun-Ren
    CHINESE PHYSICS LETTERS, 2017, 34 (03)