Robust Constrained Model Predictive Control of Irrigation Systems Based on Data-Driven Uncertainty Set Constructions

被引:3
|
作者
Shang, Chao [1 ]
Chen, Wei-Han [2 ]
You, Fengqi [2 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Cornell Univ, Ithaca, NY 14853 USA
关键词
DECISION-MAKING; OPTIMIZATION; FRAMEWORK; ALGORITHM;
D O I
10.23919/acc.2019.8814692
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel data-driven robust model predictive control (RMPC) approach for irrigation system operations, where uncertainty in evapotranspiration and precipitation forecast is explicitly taken into account. A data-driven uncertainty set is constructed to describe the distribution of evapotranspiration forecast error. Meanwhile, the distribution of precipitation forecast error data is analyzed in detail, which is shown to directly rely on forecast values and manifest a time-varying characteristics. To address this issue, we devise a tailored data-driven conditional uncertainty set to disentangle the dependence of distribution of forecast error on forecast values. The generalized affine decision rule is employed to yield a tractable approximation to the optimal control problem. Case studies based on real-world data show that, by effectively utilizing information within historical uncertainty data, the proposed data-driven RMPC approach can help maintaining the soil moisture above the safety level with less water consumptions than traditional control strategies.
引用
收藏
页码:2813 / 2818
页数:6
相关论文
共 50 条
  • [31] A data-driven robust optimization approach to scenario-based stochastic model predictive control
    Shang, Chao
    You, Fengqi
    JOURNAL OF PROCESS CONTROL, 2019, 75 : 24 - 39
  • [32] Robust Data-Driven Predictive Control for Linear Time-Varying Systems
    Hu, Kaijian
    Liu, Tao
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 910 - 915
  • [33] Privacy Preserving for Switched Systems Under Robust Data-Driven Predictive Control
    Qi, Yiwen
    Guo, Shitong
    Chi, Ronghu
    Tang, Yiwen
    Qu, Ziyu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (01): : 480 - 490
  • [34] Data-driven Robust Unit Commitment Based on the Generalized Convex Hull Uncertainty Set
    Zhang Y.
    Ai X.
    Fang J.
    Zhang M.
    Yao W.
    Wen J.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40 (02): : 477 - 486
  • [35] Robust predictive control of systems with model uncertainty
    Chen, Zhongbao
    Li, Sifu
    Kongzhi Lilun Yu Yinyong/Control Theory and Applications, 2000, 17 (02): : 259 - 263
  • [36] Synthesis of model predictive control based on data-driven learning
    Zhou, Yuanqiang
    Li, Dewei
    Xi, Yugeng
    Gan, Zhongxue
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (08)
  • [37] Data-driven adaptive model-based predictive control with application in wastewater systems
    Wahab, N. A.
    Katebi, R.
    Balderud, J.
    Rahmat, M. F.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (06): : 803 - 812
  • [38] Synthesis of model predictive control based on data-driven learning
    Yuanqiang Zhou
    Dewei Li
    Yugeng Xi
    Zhongxue Gan
    Science China Information Sciences, 2020, 63
  • [39] Data-Driven Predictive Control for Autonomous Systems
    Rosolia, Ugo
    Zhang, Xiaojing
    Borrelli, Francesco
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 1, 2018, 1 : 259 - 286
  • [40] Synthesis of model predictive control based on data-driven learning
    Yuanqiang ZHOU
    Dewei LI
    Yugeng XI
    Zhongxue GAN
    ScienceChina(InformationSciences), 2020, 63 (08) : 251 - 253