Robust Constrained Model Predictive Control of Irrigation Systems Based on Data-Driven Uncertainty Set Constructions

被引:3
|
作者
Shang, Chao [1 ]
Chen, Wei-Han [2 ]
You, Fengqi [2 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Cornell Univ, Ithaca, NY 14853 USA
关键词
DECISION-MAKING; OPTIMIZATION; FRAMEWORK; ALGORITHM;
D O I
10.23919/acc.2019.8814692
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel data-driven robust model predictive control (RMPC) approach for irrigation system operations, where uncertainty in evapotranspiration and precipitation forecast is explicitly taken into account. A data-driven uncertainty set is constructed to describe the distribution of evapotranspiration forecast error. Meanwhile, the distribution of precipitation forecast error data is analyzed in detail, which is shown to directly rely on forecast values and manifest a time-varying characteristics. To address this issue, we devise a tailored data-driven conditional uncertainty set to disentangle the dependence of distribution of forecast error on forecast values. The generalized affine decision rule is employed to yield a tractable approximation to the optimal control problem. Case studies based on real-world data show that, by effectively utilizing information within historical uncertainty data, the proposed data-driven RMPC approach can help maintaining the soil moisture above the safety level with less water consumptions than traditional control strategies.
引用
收藏
页码:2813 / 2818
页数:6
相关论文
共 50 条
  • [21] Data-Driven Distributionally Robust Bounds for Stochastic Model Predictive Control
    Fochesato, Marta
    Lygeros, John
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 3611 - 3616
  • [22] Efficient Greenhouse Temperature Control with Data-Driven Robust Model Predictive
    Chen, Wei-Han
    You, Fengqi
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 1986 - 1991
  • [23] Data-driven Scenario Selection for Multistage Robust Model Predictive Control
    Krishnamoorthy, Dinesh
    Thombre, Mandar
    Skogestad, Sigurd
    Jaschke, Johannes
    IFAC PAPERSONLINE, 2018, 51 (20): : 462 - 468
  • [24] Data-driven robust model predictive control framework for stem water potential regulation and irrigation in water management
    Chen, Wei-Han
    Shang, Chao
    Zhu, Siyu
    Haldeman, Kathryn
    Santiago, Michael
    Stroock, Abraham Duncan
    You, Fengqi
    CONTROL ENGINEERING PRACTICE, 2021, 113
  • [25] Direct Data-Driven Robust Predictive Control for Lur'e Systems based on Tailored Data Sampling
    Hoang Hai Nguyen
    Findeisen, Rolf
    IFAC PAPERSONLINE, 2024, 58 (18): : 220 - 225
  • [26] Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-Driven Robust Model Predictive Control
    Chen, Wei-Han
    You, Fengqi
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (03) : 1186 - 1197
  • [27] Direct Data-Driven Control of Constrained Systems
    Piga, Dario
    Formentin, Simone
    Bemporad, Alberto
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (04) : 1422 - 1429
  • [28] COMBINING DIRECT DATA DRIVEN AND MODEL PREDICTIVE CONTROL WITH SET MEMBERSHIP UNCERTAINTY
    Wen, Ruchun
    Wang, Jianhong
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2023, 19 (05): : 1647 - 1660
  • [29] Towards Robust Data-Driven Control Synthesis for Nonlinear Systems with Actuation Uncertainty
    Taylor, Andrew J.
    Dorobantu, Victor D.
    Dean, Sarah
    Recht, Benjamin
    Yue, Yisong
    Ames, Aaron D.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 6469 - 6476
  • [30] Data-Driven Chance Constrained and Robust Optimization under Matrix Uncertainty
    Zhang, Yi
    Feng, Yiping
    Rong, Gang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (21) : 6145 - 6160