The Cubical Matching Complex

被引:1
|
作者
Ehrenborg, Richard [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
domino tilings; lozenges tilings; collapsible cubical complexes;
D O I
10.1007/s00026-013-0212-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a bipartite planar graph embedded in the plane, we define its cubical matching complex. By combining results of Kalai and Propp, we show that the cubical matching complex is collapsible. As a corollary, we obtain that a simply connected region R in the plane that can be tiled with lozenges and hexagons satisfies , where f (i) is the number of tilings with i hexagons. The same relation holds for a region tiled with dominoes and 2 x 2 squares. Furthermore, we show for a region that can be tiled with dominoes, that each link of the associated cubical complex is either collapsible or homotopy equivalent to a sphere.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [41] CUBICAL SUPERSTRUCTURES BASED ON BODY-CENTERED CUBICAL PACKING OF ATOMS
    GUFAN, YM
    DMITRIYEV, VP
    FIZIKA METALLOV I METALLOVEDENIE, 1982, 53 (03): : 447 - 455
  • [42] EXISTENCE OF CUBICAL MAPS
    DILIBERTO, SP
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (04) : 467 - 467
  • [43] THE COMPLEXITY OF CUBICAL GRAPHS
    AFRATI, F
    PAPADIMITRIOU, CH
    PAPAGEORGIOU, G
    INFORMATION AND CONTROL, 1985, 66 (1-2): : 53 - 60
  • [44] Cubical and cosimplicial descent
    Dundas, Bjorn Ian
    Rognes, John
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 439 - 460
  • [45] Rigidification of cubical quasicategories
    Curien, Pierre-Louis
    Livernet, Muriel
    Saadia, Gabriel
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (05):
  • [46] Cubical token systems
    Ovchinnikov, Sergei
    MATHEMATICAL SOCIAL SCIENCES, 2008, 56 (02) : 149 - 165
  • [47] CUBICAL POLYHEDRA AND HOMOTOPY
    HOLSZTYN.W
    BLASS, J
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (03): : 416 - 425
  • [48] A cubical approach to straightening
    Kapulkin, Krzysztof
    Voevodsky, Vladimir
    JOURNAL OF TOPOLOGY, 2020, 13 (04) : 1682 - 1700
  • [49] The cubical poset is additive
    Clements, GF
    DISCRETE MATHEMATICS, 1997, 169 (1-3) : 17 - 28
  • [50] Maximal Assortative Matching and Maximal Dissortative Matching for Complex Network Graphs
    Meghanathan, Natarajan
    COMPUTER JOURNAL, 2016, 59 (05): : 667 - 684