The Cubical Matching Complex

被引:1
|
作者
Ehrenborg, Richard [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
domino tilings; lozenges tilings; collapsible cubical complexes;
D O I
10.1007/s00026-013-0212-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a bipartite planar graph embedded in the plane, we define its cubical matching complex. By combining results of Kalai and Propp, we show that the cubical matching complex is collapsible. As a corollary, we obtain that a simply connected region R in the plane that can be tiled with lozenges and hexagons satisfies , where f (i) is the number of tilings with i hexagons. The same relation holds for a region tiled with dominoes and 2 x 2 squares. Furthermore, we show for a region that can be tiled with dominoes, that each link of the associated cubical complex is either collapsible or homotopy equivalent to a sphere.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [31] Combinatorial Laplacian of the Matching Complex
    Dong, Xun
    Wachs, Michelle L.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9
  • [32] The Clique Complex and Hypergraph Matching
    Roy Meshulam
    Combinatorica, 2001, 21 : 89 - 94
  • [33] DETACHMENT PROCESSES IN MIDDLE IONS FROM CUBICAL PIECES OF CUBICAL LATTICES
    EMERSLEBEN, O
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1968, 237 (1-2): : 17 - +
  • [34] Complex Pattern Matching in Complex Structures: the XSeq Approach
    Zeng, Kai
    Yang, Mohan
    Mozafari, Barzan
    Zaniolo, Carlo
    2013 IEEE 29TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2013, : 1328 - 1331
  • [35] Flipping cubical meshes
    Bern, M
    Eppstein, D
    Erickson, J
    ENGINEERING WITH COMPUTERS, 2002, 18 (03) : 173 - 187
  • [36] Permutations of cubical arrays
    Wene, G. P.
    3QUANTUM: ALGEBRA GEOMETRY INFORMATION (QQQ CONFERENCE 2012), 2014, 532
  • [37] Coarse cubical rigidity
    Fioravanti, Elia
    Levcovitz, Ivan
    Sageev, Michah
    JOURNAL OF TOPOLOGY, 2024, 17 (03)
  • [38] THE COMPLEXITY OF CUBICAL GRAPHS
    AFRATI, F
    PAPADIMITRIOU, CH
    PAPAGEORGIOU, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1984, 172 : 51 - 57
  • [39] A FAMILY OF CUBICAL GRAPHS
    TUTTE, WT
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1947, 43 (04): : 459 - 474
  • [40] Flipping Cubical Meshes
    M. Bern
    D. Eppstein
    J. Erickson
    Engineering with Computers, 2002, 18 : 173 - 187