The Cubical Matching Complex

被引:1
|
作者
Ehrenborg, Richard [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
domino tilings; lozenges tilings; collapsible cubical complexes;
D O I
10.1007/s00026-013-0212-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a bipartite planar graph embedded in the plane, we define its cubical matching complex. By combining results of Kalai and Propp, we show that the cubical matching complex is collapsible. As a corollary, we obtain that a simply connected region R in the plane that can be tiled with lozenges and hexagons satisfies , where f (i) is the number of tilings with i hexagons. The same relation holds for a region tiled with dominoes and 2 x 2 squares. Furthermore, we show for a region that can be tiled with dominoes, that each link of the associated cubical complex is either collapsible or homotopy equivalent to a sphere.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [1] The Cubical Matching Complex
    Richard Ehrenborg
    Annals of Combinatorics, 2014, 18 : 75 - 81
  • [2] The cubical matching complex revisited
    Jojic, Dusko
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (01)
  • [3] ON A CUBICAL SUBDIVISION OF THE SIMPLICIAL COMPLEX
    Ahmad, Sarfraz
    Siddiqui, Muhammad Kamran
    Guirao, Juan L. G.
    Ali, Muhammad Arfan
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (03): : 83 - 88
  • [4] Cubical geometry in the polygonalisation complex
    Bell, Mark C.
    Disarlo, Valentina
    Tang, Robert
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2019, 167 (01) : 1 - 22
  • [5] Dipaths and dihomotopies in a cubical complex
    Fajstrup, L
    ADVANCES IN APPLIED MATHEMATICS, 2005, 35 (02) : 188 - 206
  • [6] ON THE STANLEY RING OF A CUBICAL COMPLEX
    HETYEI, G
    DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 14 (03) : 305 - 330
  • [7] On a cubical subdivision of the simplicial complex
    Ahmad, Sarfraz
    Siddiqui, Muhammad Kamran
    Guirao, Juan L.G.
    Ali, Muhammad Arfan
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (03): : 83 - 88
  • [8] Vassiliev invariants and the cubical knot complex
    Kofman, I
    Lin, XS
    TOPOLOGY, 2003, 42 (01) : 83 - 101
  • [9] A differential complex for CAT(0) cubical spaces
    Brodzki, J.
    Guentner, E.
    Higson, N.
    ADVANCES IN MATHEMATICS, 2019, 347 : 1054 - 1111
  • [10] Trace spaces in a pre-cubical complex
    Raussen, Martin
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (09) : 1718 - 1728