Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling

被引:743
|
作者
Klein, D. R. [1 ]
MacNeill, D. [1 ]
Lado, J. L. [2 ,3 ]
Soriano, D. [2 ]
Navarro-Moratalla, E. [4 ]
Watanabe, K. [5 ]
Taniguchi, T. [5 ]
Manni, S. [6 ,7 ,8 ]
Canfield, P. [6 ,7 ]
Fernandez-Rossier, J. [2 ]
Jarillo-Herrero, P. [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Int Iberian Nanotechnol Lab, QuantaLab, P-4715310 Braga, Portugal
[3] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[4] Univ Valencia, Inst Ciencia Mol, Paterna 46980, Spain
[5] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[6] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA
[7] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[8] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Bombay 400005, Maharashtra, India
关键词
SPIN-ORBIT TORQUES; INTRINSIC FERROMAGNETISM; FIELD; JUNCTIONS; ZERO; POLARIZATION; BILAYERS; HALL;
D O I
10.1126/science.aar3617
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field. We electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition. Themetamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively. We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.
引用
收藏
页码:1218 / +
页数:5
相关论文
共 50 条
  • [41] Synthesis, engineering, and theory of 2D van der Waals magnets
    Blei, M.
    Lado, J. L.
    Song, Q.
    Dey, D.
    Erten, O.
    Pardo, V.
    Comin, R.
    Tongay, S.
    Botana, A. S.
    APPLIED PHYSICS REVIEWS, 2021, 8 (02):
  • [42] Van der Waals stacked 2D layered materials for optoelectronics
    Zhang, Wenjing
    Wang, Qixing
    Chen, Yu
    Wang, Zhuo
    Wee, Andrew T. S.
    2D MATERIALS, 2016, 3 (02):
  • [43] Flexible electronics and optoelectronics of 2D van der Waals materials
    Yu, Huihui
    Cao, Zhihong
    Zhang, Zheng
    Zhang, Xiankun
    Zhang, Yue
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (04) : 671 - 690
  • [44] Opto-valleytronics in the 2D van der Waals heterostructure
    Abdullah Rasmita
    Wei-bo Gao
    Nano Research, 2021, 14 : 1901 - 1911
  • [45] Steering on Degrees of Freedom of 2D Van der Waals Heterostructures
    Zhang, Hui-Zhen
    Wu, Wen-jing
    Zhou, Lin
    Wu, Zhen
    Zhu, Jia
    SMALL SCIENCE, 2022, 2 (01):
  • [46] Flexible electronics and optoelectronics of 2D van der Waals materials
    Huihui Yu
    Zhihong Cao
    Zheng Zhang
    Xiankun Zhang
    Yue Zhang
    InternationalJournalofMinerals,MetallurgyandMaterials, 2022, (04) : 671 - 690
  • [47] Visualizing Van der Waals Epitaxial Growth of 2D Heterostructures
    Zhang, Kenan
    Ding, Changchun
    Pan, Baojun
    Wu, Zhen
    Marga, Austin
    Zhang, Lijie
    Zeng, Hao
    Huang, Shaoming
    ADVANCED MATERIALS, 2021, 33 (45)
  • [48] 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets
    Sun, Zhimei (zmsun@buaa.edu.cn), 1600, American Chemical Society (140):
  • [49] Clean 2D superconductivity in a bulk van der Waals superlattice
    Devarakonda, A.
    Inoue, H.
    Fang, S.
    Ozsoy-Keskinbora, C.
    Suzuki, T.
    Kriener, M.
    Fu, L.
    Kaxiras, E.
    Bell, D. C.
    Checkelsky, J. G.
    SCIENCE, 2020, 370 (6513) : 231 - +
  • [50] 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets
    Miao, Naihua
    Xu, Bin
    Zhu, Linggang
    Zhou, Jian
    Sun, Zhimei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (07) : 2417 - 2420